VTK
9.4.20250114
|
Specialization of tuple ranges and iterators for vtkAOSDataArrayTemplate. More...
Namespaces | |
namespace | basis |
A namespace for finite-element basis functions. | |
namespace | detail |
namespace | hypertreegrid |
namespace | literals |
Classes | |
class | CompositeDataSetNodeReference |
A reference proxy into a vtkCompositeDataSet, obtained by dereferencing an iterator from the vtk::Range(vtkCompositeDataSet*) overloads. More... | |
class | HasSuperclass |
Determine whether the provided class (VTKObjectType ) has a parent class. More... | |
struct | ParentClasses |
Invoke a functor on the named type and each of its parent types. More... | |
struct | ParentClasses< VTKObjectType, false > |
struct | ParentClasses< VTKObjectType, true > |
Typedefs | |
using | ComponentIdType = int |
using | TupleIdType = vtkIdType |
using | ValueIdType = vtkIdType |
template<typename ArrayType , typename ForceValueTypeForVtkDataArray = double, typename = detail::EnableIfVtkDataArray<ArrayType>> | |
using | GetAPIType = typename detail::GetAPITypeImpl< ArrayType, ForceValueTypeForVtkDataArray >::APIType |
template<typename ArrayType > | |
using | IsAOSDataArray = std::integral_constant< bool, detail::IsAOSDataArrayImpl< ArrayType >::value > |
Enumerations | |
enum class | CompositeDataSetOptions : unsigned int { None = 0 , SkipEmptyNodes = 1 << 1 } |
enum class | DataObjectTreeOptions : unsigned int { None = 0 , SkipEmptyNodes = 1 << 1 , VisitOnlyLeaves = 1 << 2 , TraverseSubTree = 1 << 3 } |
Functions | |
vtkSmartPointer< vtkCompositeArray< T > > | ConcatenateDataArrays (const std::vector< vtkDataArray * > &arrays) |
template<ComponentIdType TupleSize = detail::DynamicTupleSize, typename ArrayTypePtr = vtkDataArray*> | |
VTK_ITER_INLINE auto | DataArrayTupleRange (const ArrayTypePtr &array, TupleIdType start=-1, TupleIdType end=-1) -> typename detail::SelectTupleRange< ArrayTypePtr, TupleSize >::type |
Generate an stl and for-range compatible range of tuple iterators from a vtkDataArray. | |
template<ComponentIdType TupleSize = detail::DynamicTupleSize, typename ForceValueTypeForVtkDataArray = double, typename ArrayTypePtr = vtkDataArray*> | |
VTK_ITER_INLINE auto | DataArrayValueRange (const ArrayTypePtr &array, ValueIdType start=-1, ValueIdType end=-1) -> typename detail::SelectValueRange< ArrayTypePtr, TupleSize, ForceValueTypeForVtkDataArray >::type |
Generate an stl and for-range compatible range of flat AOS iterators from a vtkDataArray. | |
template<typename IterablePtr , typename... Options> | |
auto | Range (IterablePtr iterable, Options &&... opts) -> typename detail::IterableTraits< typename detail::StripPointers< IterablePtr >::type >::RangeType |
Generate an iterable STL proxy object for a VTK container. | |
template<typename T > | |
vtkSmartPointer< T > | MakeSmartPointer (T *obj) |
Construct a vtkSmartPointer<T> containing obj. | |
template<typename T > | |
vtkSmartPointer< T > | TakeSmartPointer (T *obj) |
Construct a vtkSmartPointer<T> containing obj. | |
template<typename ValueType > | |
vtkSmartPointer< vtkImplicitArray< vtkStructuredPointBackend< ValueType > > > | CreateStructuredPointArray (vtkDataArray *xCoords, vtkDataArray *yCoords, vtkDataArray *zCoords, int extent[6], int dataDescription, double dirMatrix[9]) |
Create an implicit point array from the given coordinates and direction matrix which is optional. | |
template<typename ObjectType > | |
std::string | TypeName () |
Return the demangled type-name of the provided ObjectType. | |
template<typename ObjectType > | |
vtkStringToken | TypeToken () |
Return a string token holding a hash of the demangled type-name of the provided ObjectType. | |
template<typename T > | |
vtkWeakPointer< T > | TakeWeakPointer (T *obj) |
Construct a vtkWeakPointer<T> containing obj. | |
template<typename VTKObjectType , typename Container > | |
void | Inherits (Container &container) |
Populate the container with the name of this class and its ancestors. | |
template<typename VTKObjectType , typename StopAtType , typename Container > | |
void | Inherits (Container &container) |
Populate the container with the name of this class and its ancestors. | |
Specialization of tuple ranges and iterators for vtkAOSDataArrayTemplate.
Compare smart pointer values.
This file contains the traits for the implicit array mechanism in VTK.
Generic implementation of value ranges and iterators, suitable for vtkDataArray and all subclasses.
Specialization of value ranges and iterators for vtkAOSDataArrayTemplate.
Generic implementation of tuple ranges and iterators, suitable for vtkDataArray and all subclasses.
These traits are very much an internal to vtkImplicitArrays and normal developers looking to develop a new vtkImplicitArray should (ideally) not have to open this file.
In order to ensure that template parameters passed to the vtkImplicitArray share a common interface without having to subclass all of them from the same abstract class, we have decided to use a trait mechanism to statically dispatch the functionalities of types passed as template parameters to the array.
There is 1 mandatory traits that a template type to vtkImplicitArray must implement:
Potential improvements to implicit arrays which would allow for write access would include the following 2 optional traits:
All the traits defining the behavior of the implicit "function" or "backend" to the vtkImplicitArray should be composited into the implicit_array_traits
using vtk::ComponentIdType = typedef int |
Definition at line 60 of file vtkDataArrayMeta.h.
using vtk::TupleIdType = typedef vtkIdType |
Definition at line 61 of file vtkDataArrayMeta.h.
using vtk::ValueIdType = typedef vtkIdType |
Definition at line 62 of file vtkDataArrayMeta.h.
using vtk::GetAPIType = typedef typename detail::GetAPITypeImpl<ArrayType, ForceValueTypeForVtkDataArray>::APIType |
Definition at line 186 of file vtkDataArrayMeta.h.
using vtk::IsAOSDataArray = typedef std::integral_constant<bool, detail::IsAOSDataArrayImpl<ArrayType>::value> |
Definition at line 210 of file vtkDataArrayMeta.h.
|
strong |
Enumerator | |
---|---|
None | |
SkipEmptyNodes |
Definition at line 21 of file vtkCompositeDataSetRange.h.
|
strong |
Enumerator | |
---|---|
None | |
SkipEmptyNodes | |
VisitOnlyLeaves | |
TraverseSubTree |
Definition at line 21 of file vtkDataObjectTreeRange.h.
vtkSmartPointer< vtkCompositeArray< T > > vtk::ConcatenateDataArrays | ( | const std::vector< vtkDataArray * > & | arrays | ) |
VTK_ITER_INLINE auto vtk::DataArrayTupleRange | ( | const ArrayTypePtr & | array, |
TupleIdType | start = -1 , |
||
TupleIdType | end = -1 |
||
) | -> typename detail::SelectTupleRange<ArrayTypePtr, TupleSize>::type |
Generate an stl and for-range compatible range of tuple iterators from a vtkDataArray.
This function returns a TupleRange object that is compatible with C++11 for-range syntax. As an example usage, consider a function that takes some instance of vtkDataArray (or a subclass) and prints the magnitude of each tuple:
Note that ArrayType
is generic in the above function. When vtk::DataArrayTupleRange
is given a vtkDataArray
pointer, the generated code produces iterators and reference proxies that rely on the vtkDataArray
API. However, when a more derived ArrayType
is passed in (for example, vtkFloatArray
), specialized implementations are used that generate highly optimized code.
Performance can be further improved when the number of components in the array is known. By passing a compile-time-constant integer as a template parameter, e.g. vtk::DataArrayTupleRange<3>(array)
, specializations are enabled that allow the compiler to perform additional optimizations.
vtk::DataArrayTupleRange
takes an additional two arguments that can be used to restrict the range of tuples to [start, end).
There is a compiler definition / CMake option called VTK_DEBUG_RANGE_ITERATORS
that enables checks for proper usage of the range/iterator/reference classes. This slows things down significantly, but is useful for diagnosing problems.
In some situations, developers may want to build in Debug mode while still maintaining decent performance for data-heavy computations. For these usecases, an additional CMake option VTK_ALWAYS_OPTIMIZE_ARRAY_ITERATORS
may be enabled to force optimization of code using these iterators. This option will force inlining and enable -O3 (or equivalent) optimization level for iterator code when compiling on platforms that support these features. This option has no effect when VTK_DEBUG_RANGE_ITERATORS
is enabled.
auto
to hold values or references obtained from iterators, as they may not behave as expected. This is a deficiency in C++ that affects all proxy iterators (such as those from vector<bool>
) that use a reference object instead of an actual C++ reference type. When in doubt, use std::iterator_traits
(along with decltype) or the typedefs listed below to determine the proper value/reference type to use. The examples below show how these may be used.To mitigate this, the following types are defined on the range object:
Range::TupleIteratorType
: Iterator that visits tuples.Range::ConstTupleIteratorType
: Const iterator that visits tuples.Range::TupleReferenceType
: Mutable tuple proxy reference.Range::ConstTupleReferenceType
: Const tuple proxy reference.Range::ComponentIteratorType
: Iterator that visits components in a tuple.Range::ConstComponentIteratorType
: Const iterator that visits tuple components.Range::ComponentReferenceType
: Reference proxy to a single tuple component.Range::ConstComponentReferenceType
: Const reference proxy to a single tuple component.Range::ComponentType
: ValueType
of components.These can be accessed via the range objects, e.g.:
DataArrayValueRange
, the tuple range can also accept a forced value type for generic vtkDataArray. Definition at line 251 of file vtkDataArrayRange.h.
VTK_ITER_INLINE auto vtk::DataArrayValueRange | ( | const ArrayTypePtr & | array, |
ValueIdType | start = -1 , |
||
ValueIdType | end = -1 |
||
) | -> typename detail::SelectValueRange<ArrayTypePtr, TupleSize, ForceValueTypeForVtkDataArray>::type |
Generate an stl and for-range compatible range of flat AOS iterators from a vtkDataArray.
This function returns a ValueRange object that is compatible with C++11 for-range syntax. The array is traversed as if calling vtkGenericDataArray::GetValue with consecutive, increasing indices. As an example usage, consider a function that takes some instance of vtkDataArray (or a subclass) and sums the values it contains:
These ranges may also be used with STL algorithms:
Note that ArrayType
is generic in the above function. When vtk::DataArrayValueRange
is given a vtkDataArray
pointer, the generated code produces iterators and reference proxies that rely on the vtkDataArray
API. However, when a more derived ArrayType
is passed in (for example, vtkFloatArray
), specialized implementations are used that generate highly optimized code.
Performance can be further improved when the number of components in the array is known. By passing a compile-time-constant integer as a template parameter, e.g. vtk::DataArrayValueRange<3>(array)
, specializations are enabled that allow the compiler to perform additional optimizations.
vtk::DataArrayValueRange
takes an additional two arguments that can be used to restrict the range of values to [start, end).
There is a compiler definition / CMake option called VTK_DEBUG_RANGE_ITERATORS
that enables checks for proper usage of the range/iterator/reference classes. This slows things down significantly, but is useful for diagnosing problems.
In some situations, developers may want to build in Debug mode while still maintaining decent performance for data-heavy computations. For these usecases, an additional CMake option VTK_ALWAYS_OPTIMIZE_ARRAY_ITERATORS
may be enabled to force optimization of code using these iterators. This option will force inlining and enable -O3 (or equivalent) optimization level for iterator code when compiling on platforms that support these features. This option has no effect when VTK_DEBUG_RANGE_ITERATORS
is enabled.
auto
to hold values or references obtained from iterators, as they may not behave as expected. This is a deficiency in C++ that affects all proxy iterators (such as those from vector<bool>
) that use a reference object instead of an actual C++ reference type. When in doubt, use std::iterator_traits
(along with decltype) or the typedefs listed below to determine the proper value/reference type to use. The examples below show how these may be used.To mitigate this, the following types are defined on the range object:
Range::IteratorType
: Iterator that visits values in AOS order.Range::ConstIteratorType
: Const iterator that visits values in AOS order.Range::ReferenceType
: Mutable value proxy reference.Range::ConstReferenceType
: Const value proxy reference.Range::ValueType
: ValueType
of array's API.These can be accessed via the range objects, e.g.:
Definition at line 361 of file vtkDataArrayRange.h.
void vtk::Inherits | ( | Container & | container | ) |
Populate the container with the name of this class and its ancestors.
The VTKObjectType template-parameter should be a subclass of vtkObjectBase that uses the vtkTypeMacro()
to define a Superclass
type-alias, as this is how the inheritance hierarchy is traversed.
The version of this function that accepts 2 template parameters uses the second parameter to iterate over a partial hierarchy truncated at (not including) the StopAtType.
Definition at line 168 of file vtkInherits.h.
void vtk::Inherits | ( | Container & | container | ) |
Populate the container with the name of this class and its ancestors.
The VTKObjectType template-parameter should be a subclass of vtkObjectBase that uses the vtkTypeMacro()
to define a Superclass
type-alias, as this is how the inheritance hierarchy is traversed.
The version of this function that accepts 2 template parameters uses the second parameter to iterate over a partial hierarchy truncated at (not including) the StopAtType.
Definition at line 175 of file vtkInherits.h.
auto vtk::Range | ( | IterablePtr | iterable, |
Options &&... | opts | ||
) | -> typename detail::IterableTraits<typename detail::StripPointers<IterablePtr>::type>::RangeType |
Generate an iterable STL proxy object for a VTK container.
Currently supports:
#include <vtkCollectionRange.h>
):#include <vtkCompositeDataSetRange.h>
)#include <vtkDataObjectTreeRange.h>
)Usage:
Definition at line 74 of file vtkRange.h.
vtkSmartPointer< T > vtk::MakeSmartPointer | ( | T * | obj | ) |
Construct a vtkSmartPointer<T> containing obj.
A new reference is added to obj.
Definition at line 468 of file vtkSmartPointer.h.
vtkSmartPointer< T > vtk::TakeSmartPointer | ( | T * | obj | ) |
Construct a vtkSmartPointer<T> containing obj.
obj's reference count is not changed.
Definition at line 476 of file vtkSmartPointer.h.
vtkSmartPointer< vtkImplicitArray< vtkStructuredPointBackend< ValueType > > > vtk::CreateStructuredPointArray | ( | vtkDataArray * | xCoords, |
vtkDataArray * | yCoords, | ||
vtkDataArray * | zCoords, | ||
int | extent[6], | ||
int | dataDescription, | ||
double | dirMatrix[9] | ||
) |
Create an implicit point array from the given coordinates and direction matrix which is optional.
xCoords, yCoords and zCoords are the coordinates of the points. extent is the extent of the dataset. dataDescription is the data description of the dataset. dirMatrix is the direction matrix of the dataset (if any, else provide a homogeneous matrix).
|
inline |
Return the demangled type-name of the provided ObjectType.
Note that if the <cxxabi.h>
header is not present or does not provide abi::__cxa_demangle()
, a mangled name will be returned.
Definition at line 116 of file vtkTypeName.h.
|
inline |
Return a string token holding a hash of the demangled type-name of the provided ObjectType.
Note that this function should become constexpr, so the hash will be computed at compile time (once VTK allows c++14 extensions). Because of this, the string for the hash cannot be added to the vtkStringManager and thus may cause exceptions later.
Definition at line 132 of file vtkTypeName.h.
vtkWeakPointer< T > vtk::TakeWeakPointer | ( | T * | obj | ) |
Construct a vtkWeakPointer<T> containing obj.
obj's reference count is not changed.
Definition at line 295 of file vtkWeakPointer.h.