<html><div style='background-color:'><DIV>
<P>Andrew,</P>
<P> Check vtkQuadric, otherwise make a subclass of vtkImplicitFuntion. It might be useful to make a class which calls user specified functions for the function and gradient values. This would allow use of arbitrary implicit functions in vtk.</P>
<P> Dave Pont<BR><BR></P></DIV>
<DIV></DIV>
<DIV></DIV>>From: "Andrew J. P. Maclean" <A.MACLEAN@ACFR.USYD.EDU.AU>
<DIV></DIV>>Reply-To: <A.MACLEAN@ACFR.USYD.EDU.AU>
<DIV></DIV>>To: <VTKUSERS@PUBLIC.KITWARE.COM>
<DIV></DIV>>Subject: [vtkusers] Parametric Representations of surfaces
<DIV></DIV>>Date: Tue, 18 Jun 2002 15:00:10 +1000
<DIV></DIV>>
<DIV></DIV>>Is it possible for vtk to handle parametric representations of a surface
<DIV></DIV>>in a way simular to the implicit functions?
<DIV></DIV>>
<DIV></DIV>>I.e
<DIV></DIV>>
<DIV></DIV>>For a given p(u, v) in [0, 2* PI]
<DIV></DIV>>
<DIV></DIV>>Generate x(p), y(p), z(p), x'(p), y'(p), z'(p) and use them in a similar
<DIV></DIV>>way to the implicit functions like vtkSphere etc.
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>Has anyone any ideas on how to do plots of parametric representations of
<DIV></DIV>>a surface?
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>Andrew
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>___________________________________________
<DIV></DIV>>
<DIV></DIV>>Andrew J. P. Maclean
<DIV></DIV>>
<DIV></DIV>>Postal:
<DIV></DIV>>
<DIV></DIV>>Australian Centre for Field Robotics
<DIV></DIV>>
<DIV></DIV>>The Rose Street Building J04
<DIV></DIV>>
<DIV></DIV>>The University of Sydney 2006 NSW
<DIV></DIV>>
<DIV></DIV>>AUSTRALIA
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>Room: 106
<DIV></DIV>>
<DIV></DIV>>Phone: +61 2 9351 3283
<DIV></DIV>>
<DIV></DIV>>Fax: +61 2 9351 7474
<DIV></DIV>>
<DIV></DIV>> http://www.acfr.usyd.edu.au/
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>___________________________________________
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV>>
<DIV></DIV></div><br clear=all><hr>Join the world’s largest e-mail service with MSN Hotmail. <a href='http://g.msn.com/1HM504201/44'>Click Here</a><br></html>