<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<META content="MSHTML 6.00.6000.17092" name=GENERATOR></HEAD>
<BODY>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011>Alexis,</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011></SPAN></FONT>&nbsp;</DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN class=859533308-07042011>I 
couldn't find such functionality in VTK. However, you can get the roots&nbsp;for 
your 3x3 matrix directly. Theory here (although you may know this already): <A 
href="http://en.wikipedia.org/wiki/Eigenvalue_algorithm#Eigenvalues_of_3.C3.973_matrices">http://en.wikipedia.org/wiki/Eigenvalue_algorithm#Eigenvalues_of_3.C3.973_matrices</A>. 
It is what I used in the end for l2.</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011></SPAN></FONT>&nbsp;</DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011>Regards,</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011></SPAN></FONT>&nbsp;</DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011>Adriano</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011></SPAN></FONT>&nbsp;</DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=859533308-07042011></SPAN></FONT><FONT 
size=2>===================================<BR><BR>Adriano Gagliardi MEng 
PhD<BR>Business Sector Leader<BR>Computational Aerodynamics<BR>Aircraft Research 
Association Ltd.<BR>Manton Lane<BR>Bedford<BR><BR>Tel: 01234 32 4644<BR>E-mail: 
agagliardi@ara.co.uk<BR>Url: www.ara.co.uk </FONT></DIV>
<DIV>&nbsp;</DIV><BR>
<DIV class=OutlookMessageHeader lang=en-us dir=ltr align=left>
<HR tabIndex=-1>
<FONT face=Tahoma size=2><B>From:</B> vtkusers-bounces@vtk.org 
[mailto:vtkusers-bounces@vtk.org] <B>On Behalf Of </B>Alexis 
Chan<BR><B>Sent:</B> 06 April 2011 20:32<BR><B>To:</B> vtkusers@vtk.org; 
vis-contest-2011@freelists.org<BR><B>Subject:</B> [vtkusers] Computing 
eigenvalues for asymmetric matrices &amp;detecting complex 
conjugate<BR></FONT><BR></DIV>
<DIV></DIV>
<DIV style="BACKGROUND-COLOR: transparent"><SPAN>Hi<BR></SPAN><SPAN>I am trying 
to compute the eigenvalue of S^2 + Omega^2 where S: strain-rate tensor and 
Omega:spin tensor [1]<BR><BR></SPAN><SPAN><B>Question 
1:</B></SPAN><BR><SPAN><BR>Since vtkMath::Jacobi computes the eigenvalues for a 
symmetric matrix, does that mean that I have compute the eigenvalues for S 
separately from the eigenvalues of Omega?<BR><BR>Is there a way to compute 
eigenvalues of asymmetric matrices in VTK ?&nbsp;</SPAN> Should I run the Matlab 
eig function using <SPAN></SPAN>vtkMatlabEngineInterface 
instead?<BR><SPAN><BR>Here's how I compute S^2+Omega^2 in my modification of 
vtkCellDerivatives:</SPAN><BR><SPAN><BR>else</SPAN> 
<SPAN>if</SPAN><SPAN>(</SPAN><SPAN>this</SPAN><SPAN>-&gt;</SPAN><SPAN>TensorMode</SPAN> 
<SPAN>==</SPAN> 
<SPAN>VTK_TENSOR_MODE_COMPUTE_LAMBDA2</SPAN><SPAN>)</SPAN><SPAN>// This is not 
actually Lambda2, but the tensor used for calculating lambda2</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>{</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>0</SPAN><SPAN>,</SPAN><SPAN>0</SPAN><SPAN>,</SPAN> 
<SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>0</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>0</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>3</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>3</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent"><SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>0</SPAN><SPAN>,</SPAN><SPAN>1</SPAN><SPAN>,</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>0</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>4</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>0</SPAN><SPAN>,</SPAN><SPAN>2</SPAN><SPAN>,</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>0</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>3</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>8</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>1</SPAN><SPAN>,</SPAN><SPAN>0</SPAN><SPAN>,</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>0</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>4</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>1</SPAN><SPAN>,</SPAN><SPAN>1</SPAN><SPAN>,</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>3</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>3</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>1</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>4</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>4</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>1</SPAN><SPAN>,</SPAN><SPAN>2</SPAN><SPAN>,</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>3</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>4</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>8</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>2</SPAN><SPAN>,</SPAN><SPAN>0</SPAN><SPAN>,</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>8</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>2</SPAN><SPAN>,</SPAN><SPAN>1</SPAN><SPAN>,</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>1</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>4</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.5</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>8</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>SetComponent</SPAN><SPAN>(</SPAN><SPAN>2</SPAN><SPAN>,</SPAN><SPAN>2</SPAN><SPAN>,</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>2</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>6</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>5</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>0.25</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>7</SPAN><SPAN>]</SPAN> 
<SPAN>+</SPAN> 
<SPAN>1</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>8</SPAN><SPAN>]</SPAN><SPAN>*</SPAN><SPAN>derivs</SPAN><SPAN>[</SPAN><SPAN>8</SPAN><SPAN>]);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>outTensors</SPAN><SPAN>-&gt;</SPAN><SPAN>InsertTuple</SPAN><SPAN>(</SPAN><SPAN>cellId</SPAN><SPAN>,</SPAN> 
<SPAN>tens</SPAN><SPAN>-&gt;</SPAN><SPAN>T</SPAN><SPAN>);</SPAN></DIV>
<DIV 
style="BACKGROUND-COLOR: transparent">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN>}<BR><BR></SPAN></DIV>full 
file here:&nbsp; <A 
href="https://github.com/alexisylchan/VTK/blob/master/Graphics/myVTKCellDerivatives.cxx" 
target=_blank>https://github.com/alexisylchan/VTK/blob/master/Graphics/myVTKCellDerivatives.cxx</A><BR><BR><B>Question2:</B><BR><BR>How 
do I determine if the eigenvalue returned by vtkMath::Jacobi is a real or 
complex-conjugate value?<BR><BR>I would appreciate any help! Thanks.<BR><BR>[1] 
<SPAN></SPAN><A 
href="http://journals.cambridge.org/download.php?file=%2FFLM%2FFLM285%2FS0022112095000462a.pdf&amp;code=b89c005d1fed041d4786ecfec8f757c2" 
target=_blank>Jinhee Jeong and Fazle Hussain. On the Identification of a Vortex. 
Journal of Fluid Mechanics, pages 69-94, 285 1995</A> <BR>[2] <A 
href="http://citeseer.ist.psu.edu/viewdoc/summary?cid=543964" 
target=_blank><SPAN 
style="FONT-WEIGHT: normal; FONT-SIZE: 11pt; VERTICAL-ALIGN: baseline; COLOR: rgb(0,0,0); FONT-STYLE: normal; FONT-FAMILY: Times New Roman; BACKGROUND-COLOR: transparent; TEXT-DECORATION: none">Sujudi,D., 
and Haines,R., &#8220;Identification of Swirling Flow in 3-D Vector Fields&#8221;, Proc. 
AIAA (Am. Inst. of Aeronautics and Astronautics) Computational Fluid Dynamics 
Conf., American Institute of Aeronautics and Astronautics, (Reston, Va., June 
1995, pp. 151-158.</SPAN></A> <BR>-- 
<BR>Regards,<BR>Alexis<BR><BR><p>**********************************************************************<br />This email contains information that is private and confidential and is intended only for the addressee.<br />If you are not the intended recipient please delete it and notify us immediately by e-mailing the sender.<br />Note: All email sent to or from this address may be accessed by someone other than the recipient, for<br />system management and security reasons.<br />Aircraft Research Association Ltd.  Registered in England, Registration No 503668 Registered Office:<br />Manton Lane, Bedford MK41 7PF England VAT No GB 196351245</p><p>**********************************************************************</p>
</BODY></HTML>