GPU Acceleration - V4: Difference between revisions
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
CPU side. Conversely, GPU code will modify the pixel values on the GPU side. We propose | CPU side. Conversely, GPU code will modify the pixel values on the GPU side. We propose | ||
an automatic synchronization mechanism between the CPU and GPU buffers, transparent to | an automatic synchronization mechanism between the CPU and GPU buffers, transparent to | ||
the user. | the user. Specifically, we propose the following functionalities for the ITK GPU image class: | ||
** Efficient GPU memory management | |||
** CPU and GPU synchronization scheme | |||
** GPU buffer interface for direct access | |||
2. Multithreading model for the GPU | |||
3. Basic GPU image operators |
Revision as of 15:56, 20 October 2010
This page outlines the proposed GPU acceleration framework in ITK v4. The GPU has become a cost-effective parallel computing platform for computationally expensive problems. Although many ITK image filters can benefit from the GPU, there has been no GPU support in ITK as of today. We propose to add a new data structure, framework, and some basic image operations that support the GPU in order to allow ITK developers to easily implement their filters running on both the CPU and GPU.
Goals
- Add the support for the GPU processing in ITK
- GPU image class
- Extension of ITK multithreading model to support the GPU
- Basic GPU image operators
Authors
GPU supports in ITK v4 has been proposed by Harvard University and University of Utah.
- Won-Ki Jeong (wkjeong -at- seas.harvard.edu)
- Hanspeter Pfister (pfister -at- seas.harvard.edu)
- Ross Whitaker (whitaker -at- cs.utah.edu)
Plans
1. GPU image class
We propose a new GPU image class, itk::GPUImage, which provides a GPU data container and functions for implicit and explicit data transfers between the CPU and the GPU memory spaces. itk::GPUImage will contain two snapshots of the current image—one on the CPU and one on the GPU—but provide the functionality of a single image to the user. itk::GPUImage inherits all the public functions from itk::Image, so it can be used with the existing CPU ITK image filters as before. All the pixel operators, for example GetPixel(), and the image iterators can be used to modify pixel values on the CPU side. Conversely, GPU code will modify the pixel values on the GPU side. We propose an automatic synchronization mechanism between the CPU and GPU buffers, transparent to the user. Specifically, we propose the following functionalities for the ITK GPU image class:
- Efficient GPU memory management
- CPU and GPU synchronization scheme
- GPU buffer interface for direct access
2. Multithreading model for the GPU
3. Basic GPU image operators