ITK/Examples/WishList/Segmentation/kMeansClustering
From KitwarePublic
< ITK | Examples
Jump to navigationJump to search
Revision as of 13:00, 1 December 2010 by Daviddoria (talk | contribs) (moved ITK/InsightClopedia/kMeansClustering to ITK/Examples/Segmentation/kMeansClustering)
KMeansClassification.cxx
<source lang="cpp">
- include <itkImage.h>
- include <itkImageFileReader.h>
- include <itkImageFileWriter.h>
- include <itkScalarImageKmeansImageFilter.h>
int main( int argc, char * argv [] ) {
//sample usage //./KMeansClassification input.jpg output.jpg 1 3 0 100 200 //verify command line arguments if( argc < 5 ) { std::cerr << "Usage: " << std::endl; std::cerr << argv[0]; std::cerr << " inputScalarImage outputLabeledImage contiguousLabels"; std::cerr << " numberOfClasses mean1 mean2... meanN " << std::endl; return EXIT_FAILURE; }
//parse command line arguments const char * inputImageFileName = argv[1]; const char * outputImageFileName = argv[2]; const unsigned int useNonContiguousLabels = atoi( argv[3] ); const unsigned int numberOfInitialClasses = atoi( argv[4] ); const unsigned int argoffset = 5;
if( static_cast<unsigned int>(argc) < numberOfInitialClasses + argoffset ) { std::cerr << "Error: " << std::endl; std::cerr << numberOfInitialClasses << " classes has been specified "; std::cerr << "but no enough means have been provided in the command "; std::cerr << "line arguments " << std::endl; return EXIT_FAILURE; } std::vector<double> userMeans; for( unsigned k = 0; k < numberOfInitialClasses; k++ ) { const double userProvidedInitialMean = atof( argv[k+argoffset] ); userMeans.push_back(userProvidedInitialMean); } // Define the pixel type and dimension of the image that we intend to // classify. typedef signed short PixelType; const unsigned int Dimension = 2;
typedef itk::Image<PixelType, Dimension > ImageType;
// create a reader typedef itk::ImageFileReader< ImageType > ReaderType; ReaderType::Pointer reader = ReaderType::New(); reader->SetFileName( inputImageFileName );
// Instantiate the ScalarImageKmeansImageFilter typedef itk::ScalarImageKmeansImageFilter< ImageType > KMeansFilterType;
KMeansFilterType::Pointer kmeansFilter = KMeansFilterType::New();
kmeansFilter->SetInput( reader->GetOutput() );
// Make the output image intellegable by expanding the range of output image values, if desired kmeansFilter->SetUseNonContiguousLabels( useNonContiguousLabels );
// initialize using the user input means for( unsigned k = 0; k < numberOfInitialClasses; k++ ) { kmeansFilter->AddClassWithInitialMean( userMeans[k] ); }
// Create and setup a writer typedef KMeansFilterType::OutputImageType OutputImageType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New(); writer->SetInput( kmeansFilter->GetOutput() );
writer->SetFileName( outputImageFileName );
// execut the pipeline try { writer->Update(); } catch( itk::ExceptionObject & excp ) { std::cerr << "Problem encountered while writing "; std::cerr << " image file : " << outputImageFileName << std::endl; std::cerr << excp << std::endl; return EXIT_FAILURE; }
// inspect the means KMeansFilterType::ParametersType estimatedMeans = kmeansFilter->GetFinalMeans();
const unsigned int numberOfClasses = estimatedMeans.Size();
for ( unsigned int i = 0 ; i < numberOfClasses ; ++i ) { std::cout << "cluster[" << i << "] "; std::cout << " estimated mean : " << estimatedMeans[i] << std::endl; }
return EXIT_SUCCESS;
}
</source>
CMakeLists.txt
<source lang="cmake"> cmake_minimum_required(VERSION 2.6)
PROJECT(KMeansClassification)
FIND_PACKAGE(ITK REQUIRED) INCLUDE(${ITK_USE_FILE})
ADD_EXECUTABLE(KMeansClassification KMeansClassification.cxx) TARGET_LINK_LIBRARIES(KMeansClassification ITKNumerics ITKIO)
</source>