SimpleITK/Advisory Review Board
From KitwarePublic
< SimpleITK
Jump to navigationJump to search
Revision as of 08:04, 3 September 2010 by Danmueller (talk | contribs) (Added regsitration enum approach)
- Harvey Cline, Kitware Inc.
- Raghu Machiraju, The State University of Ohio
- John Galeotti, CMU
- Hans Johnson, University of Iowa
- Fabrice de Chaumont, Pasteur Institute
- New students in the UNC CISMM project (taylorr@cs.unc.edu)
- Jesus Caban, NLM-NIH
ARB Prototype Code
Gaussian Blur
- Open an image
- Filter the image with a Gaussian blur using sigma = 2
- Write the image back out
Procedural
// Read the image Image::Pointer im = ImageFileReader::Execute("sample/path/to/image.jpg"); // Apply Gaussian with sigma = 2 im = GaussianFilter::Execute(im, 2); // Write out the image ImageFileWriter::Execute(im, "sample/path/to/output.png");
Filter Blocks
// Read the image ImageFileReader reader; reader.SetFilename( "sample/path/to/image.jpg" ); Image::Pointer im = reader.execute(); // Apply Gaussian with sigma = 2 Gaussian filter; filter.SetSigma( 2 ); im = filter.execute( im ); // Write out the image ImageFileWriter writer; writer.SetFilename( "sample/path/to/output.png" ); writer.execute( im );
Pipelined
// Read the image ImageFileReader reader; reader.SetFilename( "sample/path/to/image.jpg" ); // Apply Gaussian with sigma = 2 Gaussian filter; filter.SetSigma( 2 ); filter.SetInput( reader.getOutput() ); // Write out the image ImageFileWriter writer; writer.SetFilename( "sample/path/to/output.png" ); writer.SetInput( filter->GetOutput() ); // Execute the pipieline writer.Update();
Image Registration
- Open two images (one fixed, one moving)
- Register the moving image to the fixed image using affine registration
- Resample the moving image using the computed transform
- Write the resampled image out
Procedural
// Open the fixed and moving images Image::Pointer fixedImage = ImageFileReader::Execute( "path/to/fixed.jpg" ); Image::Pointer movingImage = ImageFileReader::Execute( "path/to/moving.jpg" ); // Register the moving image to the fixed image AffineTransform::Pointer transform AffineRegistrator::Execute( fixedImage, movingImage ); // Resample the moving image movingImage = ImageResampler::Execute( movingImage, transform ); // Write out the resampled image ImageFileWriter::Ececute( movingImage, "path/to/output.png" );
Filter blocks
// Open the fixed and moving images ImageFileReader reader; reader.SetFilename( "path/to/fixed.jpg" ); Image::Pointer fixedImage = reader.execute(); reader.SetFilename( "path/to/moving.jpg" ); Image::Pointer movingImage = reader.execute(); // Register the moving image to the fixed image AffineRegistrator registrator; registrator.SetFixedImage( fixedImage ); registrator.SetMovingImage( movingImage ); AffineTransform transform; transform = registrator.execute(); // Resample the moving image Resampler resampler; resampler.SetTransform( transform ); movingImage = resampler.execute( movingImage ); // Write out the resampled image ImageFileWriter writer; writer.SetFilename( "path/to/output.png" ); writer.ececute( movingImage );
Pipeline
// Open the fixed and moving images ImageFileReader reader1; ImageFileReader reader2; reader1.SetFilename( "path/to/fixed.jpg" ); reader2.SetFilename( "path/to/moving.jpg" ); // Register the moving image to the fixed image AffineRegistrator registrator; registrator.SetFixedImage( reader1.GetOutput() ); registrator.SetMovingImage( reader2.GetOutput() ); // Resample the moving image Resampler resampler; resampler.SetInput( reader2.GetOutput() ); resampler.SetTransform( registrator.GetOutput() ); // Write out the resampled image ImageFileWriter writer; writer.SetFilename( "path/to/output.png" ); writer.SetInput( movingImage ); // Execute the pipeline writer.Update();
Enum approach
// NOTE: Language = C# // Create metric itk::simple::simpleMetric metric; metric.setType( itk::simple::MattesMutualInformation ); metric.setParameterInt( "NumberOfHistogramBins", 30 ); metric.setParameterInt( "NumberOfSpatialSamples", 1000 ); // Create interpolator itk::simple::simpleInterpolator interpolator; interpolator.setType( itk::simple::LanczosWindowedSincInterpolation ); // Create transform itk::simple::simpleTransform transform; transform.setType( itk::simple::AffineTransform ); // Create optimizer itk::simple::simpleOptimizer optimizer; optimizer.setType( itk::simple::RegularStepGradientDescentOptimizer ); optimizer.setParameterInt( "NumberOfIterations", 100 ); optimizer.setParameterDouble( "MinimumStepLength", 0.005 ); optimizer.setParameterDouble( "MaximumStepLength", 1.0 ); optimizer.setParameterBoolean( "Maximize", true ); // Registration itk::simple::simpleRegistration registration; registration.setMetric( metric ); registration.setInterpolator( interpolator ); registration.setTransform( transform ); registration.setOptimizer( optimizer );