TubeTK/Documentation/EnhanceTubesUsingDiffusion
From KitwarePublic
< TubeTK | Documentation
Jump to navigationJump to search
Description: Compute vesselness score of an image using Frangi's method.
USAGE:
./EnhanceTubesUsingDiffusion [--returnparameterfile <std::string>] [--processinformationaddress <std::string>] [--xml] [--echo] [-s <double>] [-w <double>] [-e <double>] [-g <double>] [-b <double>] [-r <int>] [--iterations <int>] [--steps <int>] [--max <double>] [--min <double>] [--timestep <double>] [--] [--version] [-h] <std::string> <std::string>
Where:
--returnparameterfile <std::string> Filename in which to write simple return parameters (int, float, int-vector, etc.) as opposed to bulk return parameters (image, geometry, transform, measurement, table).
--processinformationaddress <std::string> Address of a structure to store process information (progress, abort, etc.). (default: 0)
--xml Produce xml description of command line arguments (default: 0)
--echo Echo the command line arguments (default: 0)
-s <double>, --sensitivity <double> How sensitive the filter is. (default: 20)
-w <double>, --omega <double> Our omega value. (default: 25)
-e <double>, --epsilon <double> Our epsilon value. (default: 0.01)
-g <double>, --gamma <double> How sensitive the filter is to second order structureness. (default: 5)
-b <double>, --beta <double> How sensitive the filter is to blobness. (default: 0.5)
-r <int>, --recalculate <int> How many iterations do we recalculate vesselness. (default: 11)
--iterations <int> Number of iterations. (default: 50)
--steps <int> Number of sigma steps. (default: 1)
--max <double> Maximum sigma scale. (default: 1)
--min <double> Minimum sigma scale. (default: 1)
--timestep <double> Time Step. (default: 0.05)
--, --ignore_rest Ignores the rest of the labeled arguments following this flag.
--version Displays version information and exits.
-h, --help Displays usage information and exits.
<std::string> (required) Input volume.
<std::string> (required) Blurred volume.
Author(s): Patrick Reynolds (Kitware)
Acknowledgements: This work is part of the TubeTK project at Kitware. It was funded by USC:EXPOSE and is an adaptation of the work of Hua Yang.