VTK
|
Generate an ellipsoid. More...
#include <vtkParametricEllipsoid.h>
Public Types | |
typedef vtkParametricFunction | Superclass |
Public Member Functions | |
virtual int | IsA (const char *type) |
vtkParametricEllipsoid * | NewInstance () const |
void | PrintSelf (ostream &os, vtkIndent indent) |
virtual int | GetDimension () |
virtual void | Evaluate (double uvw[3], double Pt[3], double Duvw[9]) |
virtual double | EvaluateScalar (double uvw[3], double Pt[3], double Duvw[9]) |
virtual void | SetXRadius (double) |
virtual double | GetXRadius () |
virtual void | SetYRadius (double) |
virtual double | GetYRadius () |
virtual void | SetZRadius (double) |
virtual double | GetZRadius () |
Static Public Member Functions | |
static int | IsTypeOf (const char *type) |
static vtkParametricEllipsoid * | SafeDownCast (vtkObjectBase *o) |
static vtkParametricEllipsoid * | New () |
Protected Member Functions | |
virtual vtkObjectBase * | NewInstanceInternal () const |
vtkParametricEllipsoid () | |
~vtkParametricEllipsoid () | |
Protected Attributes | |
double | XRadius |
double | YRadius |
double | ZRadius |
double | N1 |
double | N2 |
Generate an ellipsoid.
vtkParametricEllipsoid generates an ellipsoid. If all the radii are the same, we have a sphere. An oblate spheroid occurs if RadiusX = RadiusY > RadiusZ. Here the Z-axis forms the symmetry axis. To a first approximation, this is the shape of the earth. A prolate spheroid occurs if RadiusX = RadiusY < RadiusZ.
For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/documents.php in the "VTK Technical Documents" section in the VTk.org web pages.
Definition at line 44 of file vtkParametricEllipsoid.h.
Reimplemented from vtkParametricFunction.
Definition at line 47 of file vtkParametricEllipsoid.h.
vtkParametricEllipsoid::vtkParametricEllipsoid | ( | ) | [protected] |
vtkParametricEllipsoid::~vtkParametricEllipsoid | ( | ) | [protected] |
static int vtkParametricEllipsoid::IsTypeOf | ( | const char * | name | ) | [static] |
Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.
Reimplemented from vtkParametricFunction.
virtual int vtkParametricEllipsoid::IsA | ( | const char * | name | ) | [virtual] |
Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.
Reimplemented from vtkParametricFunction.
static vtkParametricEllipsoid* vtkParametricEllipsoid::SafeDownCast | ( | vtkObjectBase * | o | ) | [static] |
Reimplemented from vtkParametricFunction.
virtual vtkObjectBase* vtkParametricEllipsoid::NewInstanceInternal | ( | ) | const [protected, virtual] |
Reimplemented from vtkParametricFunction.
Reimplemented from vtkParametricFunction.
void vtkParametricEllipsoid::PrintSelf | ( | ostream & | os, |
vtkIndent | indent | ||
) | [virtual] |
Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from vtkParametricFunction.
static vtkParametricEllipsoid* vtkParametricEllipsoid::New | ( | ) | [static] |
Construct an ellipsoid with the following parameters: MinimumU = 0, MaximumU = 2*Pi, MinimumV = 0, MaximumV = Pi, JoinU = 1, JoinV = 0, TwistU = 0, TwistV = 0, ClockwiseOrdering = 1, DerivativesAvailable = 1, XRadius = 1, YRadius = 1, ZRadius = 1, a sphere in this case.
Reimplemented from vtkObject.
virtual int vtkParametricEllipsoid::GetDimension | ( | ) | [inline, virtual] |
Return the parametric dimension of the class.
Implements vtkParametricFunction.
Definition at line 57 of file vtkParametricEllipsoid.h.
virtual void vtkParametricEllipsoid::SetXRadius | ( | double | ) | [virtual] |
Set/Get the scaling factor for the x-axis. Default = 1.
virtual double vtkParametricEllipsoid::GetXRadius | ( | ) | [virtual] |
Set/Get the scaling factor for the x-axis. Default = 1.
virtual void vtkParametricEllipsoid::SetYRadius | ( | double | ) | [virtual] |
Set/Get the scaling factor for the y-axis. Default = 1.
virtual double vtkParametricEllipsoid::GetYRadius | ( | ) | [virtual] |
Set/Get the scaling factor for the y-axis. Default = 1.
virtual void vtkParametricEllipsoid::SetZRadius | ( | double | ) | [virtual] |
Set/Get the scaling factor for the z-axis. Default = 1.
virtual double vtkParametricEllipsoid::GetZRadius | ( | ) | [virtual] |
Set/Get the scaling factor for the z-axis. Default = 1.
virtual void vtkParametricEllipsoid::Evaluate | ( | double | uvw[3], |
double | Pt[3], | ||
double | Duvw[9] | ||
) | [virtual] |
An ellipsoid. This function performs the mapping , returning it as Pt. It also returns the partial derivatives Du and Dv. . Then the normal is .
Implements vtkParametricFunction.
virtual double vtkParametricEllipsoid::EvaluateScalar | ( | double | uvw[3], |
double | Pt[3], | ||
double | Duvw[9] | ||
) | [virtual] |
Calculate a user defined scalar using one or all of uvw, Pt, Duvw. uvw are the parameters with Pt being the the cartesian point, Duvw are the derivatives of this point with respect to u, v and w. Pt, Duvw are obtained from Evaluate(). This function is only called if the ScalarMode has the value vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED If the user does not need to calculate a scalar, then the instantiated function should return zero.
Implements vtkParametricFunction.
double vtkParametricEllipsoid::XRadius [protected] |
Definition at line 99 of file vtkParametricEllipsoid.h.
double vtkParametricEllipsoid::YRadius [protected] |
Definition at line 100 of file vtkParametricEllipsoid.h.
double vtkParametricEllipsoid::ZRadius [protected] |
Definition at line 101 of file vtkParametricEllipsoid.h.
double vtkParametricEllipsoid::N1 [protected] |
Definition at line 102 of file vtkParametricEllipsoid.h.
double vtkParametricEllipsoid::N2 [protected] |
Definition at line 103 of file vtkParametricEllipsoid.h.