VTK
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
vtkGenericAdaptorCell Class Referenceabstract

defines cell interface More...

#include <vtkGenericAdaptorCell.h>

Inheritance diagram for vtkGenericAdaptorCell:
[legend]
Collaboration diagram for vtkGenericAdaptorCell:
[legend]

Public Types

typedef vtkObject Superclass
 
- Public Types inherited from vtkObject
typedef vtkObjectBase Superclass
 

Public Member Functions

virtual int IsA (const char *type)
 
vtkGenericAdaptorCellNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent)
 
virtual vtkIdType GetId ()=0
 
virtual int IsInDataSet ()=0
 
virtual int GetType ()=0
 
virtual int GetDimension ()=0
 
virtual int GetGeometryOrder ()=0
 
int IsGeometryLinear ()
 
virtual int GetAttributeOrder (vtkGenericAttribute *a)=0
 
virtual int GetHighestOrderAttribute (vtkGenericAttributeCollection *ac)
 
int IsAttributeLinear (vtkGenericAttribute *a)
 
virtual int IsPrimary ()=0
 
virtual int GetNumberOfPoints ()=0
 
virtual int GetNumberOfBoundaries (int dim=-1)=0
 
virtual int GetNumberOfDOFNodes ()=0
 
virtual void GetPointIterator (vtkGenericPointIterator *it)=0
 
virtual vtkGenericCellIteratorNewCellIterator ()=0
 
virtual void GetBounds (double bounds[6])=0
 
virtual doubleGetBounds ()
 
virtual double GetLength2 ()
 
virtual int GetParametricCenter (double pcoords[3])=0
 
virtual double GetParametricDistance (double pcoords[3])=0
 
virtual doubleGetParametricCoords ()=0
 
virtual int IsFaceOnBoundary (vtkIdType faceId)=0
 
virtual int IsOnBoundary ()=0
 
virtual void GetPointIds (vtkIdType *id)=0
 
virtual intGetFaceArray (int faceId)=0
 
virtual int GetNumberOfVerticesOnFace (int faceId)=0
 
virtual intGetEdgeArray (int edgeId)=0
 
virtual void GetBoundaryIterator (vtkGenericCellIterator *boundaries, int dim=-1)=0
 
virtual int CountNeighbors (vtkGenericAdaptorCell *boundary)=0
 
virtual void CountEdgeNeighbors (int *sharing)=0
 
virtual void GetNeighbors (vtkGenericAdaptorCell *boundary, vtkGenericCellIterator *neighbors)=0
 
virtual int FindClosestBoundary (int subId, double pcoords[3], vtkGenericCellIterator *&boundary)=0
 
virtual int EvaluatePosition (double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2)=0
 
virtual void EvaluateLocation (int subId, double pcoords[3], double x[3])=0
 
virtual void InterpolateTuple (vtkGenericAttribute *a, double pcoords[3], double *val)=0
 
virtual void InterpolateTuple (vtkGenericAttributeCollection *c, double pcoords[3], double *val)=0
 
virtual void Contour (vtkContourValues *values, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *outPd, vtkCellData *outCd, vtkPointData *internalPd, vtkPointData *secondaryPd, vtkCellData *secondaryCd)
 
virtual void Clip (double value, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int insideOut, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *outPd, vtkCellData *outCd, vtkPointData *internalPd, vtkPointData *secondaryPd, vtkCellData *secondaryCd)
 
virtual int IntersectWithLine (double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)=0
 
virtual void Derivatives (int subId, double pcoords[3], vtkGenericAttribute *attribute, double *derivs)=0
 
virtual void Tessellate (vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, vtkPoints *points, vtkIncrementalPointLocator *locator, vtkCellArray *cellArray, vtkPointData *internalPd, vtkPointData *pd, vtkCellData *cd, vtkUnsignedCharArray *types)
 
virtual void TriangulateFace (vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int index, vtkPoints *points, vtkIncrementalPointLocator *locator, vtkCellArray *cellArray, vtkPointData *internalPd, vtkPointData *pd, vtkCellData *cd)
 
- Public Member Functions inherited from vtkObject
vtkObjectNewInstance () const
 
virtual void DebugOn ()
 
virtual void DebugOff ()
 
bool GetDebug ()
 
void SetDebug (bool debugFlag)
 
virtual void Modified ()
 
virtual unsigned long GetMTime ()
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 
vtkCommandGetCommand (unsigned long tag)
 
void RemoveObserver (vtkCommand *)
 
void RemoveObservers (unsigned long event, vtkCommand *)
 
void RemoveObservers (const char *event, vtkCommand *)
 
int HasObserver (unsigned long event, vtkCommand *)
 
int HasObserver (const char *event, vtkCommand *)
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
int HasObserver (unsigned long event)
 
int HasObserver (const char *event)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 
int InvokeEvent (unsigned long event, void *callData)
 
int InvokeEvent (const char *event, void *callData)
 
int InvokeEvent (unsigned long event)
 
int InvokeEvent (const char *event)
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 
virtual void Delete ()
 
virtual void FastDelete ()
 
void Print (ostream &os)
 
virtual void Register (vtkObjectBase *o)
 
virtual void UnRegister (vtkObjectBase *o)
 
void SetReferenceCount (int)
 
void PrintRevisions (ostream &)
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 
int GetReferenceCount ()
 

Static Public Member Functions

static int IsTypeOf (const char *type)
 
static vtkGenericAdaptorCellSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkObject
static int IsTypeOf (const char *type)
 
static vtkObjectSafeDownCast (vtkObjectBase *o)
 
static vtkObjectNew ()
 
static void BreakOnError ()
 
static void SetGlobalWarningDisplay (int val)
 
static void GlobalWarningDisplayOn ()
 
static void GlobalWarningDisplayOff ()
 
static int GetGlobalWarningDisplay ()
 
- Static Public Member Functions inherited from vtkObjectBase
static int IsTypeOf (const char *name)
 
static vtkObjectBaseNew ()
 

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 
 vtkGenericAdaptorCell ()
 
virtual ~vtkGenericAdaptorCell ()
 
void Reset ()
 
void AllocateTuples (int size)
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
virtual ~vtkObject ()
 
virtual void RegisterInternal (vtkObjectBase *, int check)
 
virtual void UnRegisterInternal (vtkObjectBase *, int check)
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=NULL)
 
void InternalReleaseFocus ()
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
virtual void CollectRevisions (ostream &)
 
virtual void ReportReferences (vtkGarbageCollector *)
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

vtkTetraTetra
 
vtkTriangleTriangle
 
vtkLineLine
 
vtkVertexVertex
 
vtkQuadQuad
 
vtkHexahedronHexa
 
vtkWedgeWedge
 
vtkPyramidPyramid
 
vtkDoubleArrayInternalPoints
 
vtkCellArrayInternalCellArray
 
vtkDoubleArrayInternalScalars
 
vtkDoubleArrayPointDataScalars
 
vtkIdListInternalIds
 
vtkDoubleArrayScalars
 
vtkPointDataPointData
 
vtkCellDataCellData
 
doubleTuples
 
int TuplesCapacity
 
double Bounds [6]
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
- Protected Attributes inherited from vtkObjectBase
vtkAtomicInt32 ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 

Detailed Description

defines cell interface

In VTK, spatial-temporal data is defined in terms of a dataset which is composed of cells. The cells are topological entities over which an interpolation field is applied. Cells are defined in terms of a topology (e.g., vertices, lines, triangles, polygons, tetrahedra, etc.), points that instantiate the geometry of the cells, and interpolation fields (in the general case one interpolation field is for geometry, the other is for attribute data associated with the cell).

Currently most algorithms in VTK use vtkCell and vtkDataSet, which make assumptions about the nature of datasets, cells, and attributes. In particular, this abstraction assumes that cell interpolation functions are linear, or products of linear functions. Further, VTK implements most of the interpolation functions. This implementation starts breaking down as the complexity of the interpolation (or basis) functions increases.

vtkGenericAdaptorCell addresses these issues by providing more general abstraction for cells. It also adopts modern C++ practices including using iterators. The vtkGenericAdaptorCell is designed to fit within the adaptor framework; meaning that it is meant to adapt VTK to external simulation systems (see the GenericFiltering/README.html).

Please note that most cells are defined in terms of other cells (the boundary cells). They are also defined in terms of points, which are not the same as vertices (vertices are a 0-D cell; points represent a position in space).

Another important concept is the notion of DOFNodes. These concept supports cell types with complex interpolation functions. For example, higher-order p-method finite elements may have different functions on each of their topological features (edges, faces, region). The coefficients of these polynomial functions are associated with DOFNodes. (There is a single DOFNode for each topological feature.) Note that from this perspective, points are used to establish the topological form of the cell; mid-side nodes and such are considered DOFNodes.

See also
vtkGenericDataSet
Tests:
vtkGenericAdaptorCell (Tests)

Definition at line 94 of file vtkGenericAdaptorCell.h.

Member Typedef Documentation

Definition at line 97 of file vtkGenericAdaptorCell.h.

Constructor & Destructor Documentation

vtkGenericAdaptorCell::vtkGenericAdaptorCell ( )
protected
virtual vtkGenericAdaptorCell::~vtkGenericAdaptorCell ( )
protectedvirtual

Member Function Documentation

static int vtkGenericAdaptorCell::IsTypeOf ( const char *  type)
static
virtual int vtkGenericAdaptorCell::IsA ( const char *  name)
virtual

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkObject.

Reimplemented in vtkBridgeCell.

static vtkGenericAdaptorCell* vtkGenericAdaptorCell::SafeDownCast ( vtkObjectBase o)
static
virtual vtkObjectBase* vtkGenericAdaptorCell::NewInstanceInternal ( ) const
protectedvirtual

Reimplemented from vtkObject.

Reimplemented in vtkBridgeCell.

vtkGenericAdaptorCell* vtkGenericAdaptorCell::NewInstance ( ) const
void vtkGenericAdaptorCell::PrintSelf ( ostream &  os,
vtkIndent  indent 
)
virtual

Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkObject.

Reimplemented in vtkBridgeCell.

virtual vtkIdType vtkGenericAdaptorCell::GetId ( )
pure virtual

Unique identification number of the cell over the whole data set. This unique key may not be contiguous.

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::IsInDataSet ( )
pure virtual

Does `this' a cell of a dataset? (otherwise, it is a boundary cell)

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetType ( )
pure virtual

Return the type of the current cell.

Postcondition
(result==VTK_HIGHER_ORDER_EDGE)|| (result==VTK_HIGHER_ORDER_TRIANGLE)|| (result==VTK_HIGHER_ORDER_TETRAHEDRON)

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetDimension ( )
pure virtual

Return the topological dimension of the current cell.

Postcondition
valid_result: result>=0 && result<=3

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetGeometryOrder ( )
pure virtual

Return the interpolation order of the geometry.

Postcondition
positive_result: result>=0

Implemented in vtkBridgeCell.

int vtkGenericAdaptorCell::IsGeometryLinear ( )

Does the cell have a non-linear interpolation for the geometry?

Postcondition
definition: result==(GetGeometryOrder()==1)
virtual int vtkGenericAdaptorCell::GetAttributeOrder ( vtkGenericAttribute a)
pure virtual

Return the interpolation order of attribute `a' on the cell (may differ by cell).

Precondition
a_exists: a!=0
Postcondition
positive_result: result>=0

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetHighestOrderAttribute ( vtkGenericAttributeCollection ac)
virtual

Return the index of the first point centered attribute with the highest order in `ac'.

Precondition
ac_exists: ac!=0
Postcondition
valid_result: result>=-1 && result<ac->GetNumberOfAttributes()
int vtkGenericAdaptorCell::IsAttributeLinear ( vtkGenericAttribute a)

Does the attribute `a' have a non-linear interpolation?

Precondition
a_exists: a!=0
Postcondition
definition: result==(GetAttributeOrder()==1)
virtual int vtkGenericAdaptorCell::IsPrimary ( )
pure virtual

Is the cell primary (i.e. not composite) ?

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetNumberOfPoints ( )
pure virtual

Return the number of corner points that compose the cell.

Postcondition
positive_result: result>=0

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetNumberOfBoundaries ( int  dim = -1)
pure virtual

Return the number of boundaries of dimension `dim' (or all dimensions greater than 0 and less than GetDimension() if -1) of the cell. When dim is -1, the number of vertices is not included in the count because vertices are a special case: a vertex will have at most a single field value associated with it; DOF nodes may have an arbitrary number of field values associated with them.

Precondition
valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
Postcondition
positive_result: result>=0

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetNumberOfDOFNodes ( )
pure virtual

Accumulated number of DOF nodes of the current cell. A DOF node is a component of cell with a given topological dimension. e.g.: a triangle has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF: 1 region, 6 faces, and 12 edges. The number of vertices is not included in the count because vertices are a special case: a vertex will have at most a single field value associated with it; DOF nodes may have an arbitrary number of field values associated with them.

Postcondition
valid_result: result==GetNumberOfBoundaries(-1)+1

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::GetPointIterator ( vtkGenericPointIterator it)
pure virtual

Return the points of cell into `it'.

Precondition
it_exists: it!=0

Implemented in vtkBridgeCell.

virtual vtkGenericCellIterator* vtkGenericAdaptorCell::NewCellIterator ( )
pure virtual

Create an empty cell iterator. The user is responsible for deleting it.

Postcondition
result_exists: result!=0

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::GetBoundaryIterator ( vtkGenericCellIterator boundaries,
int  dim = -1 
)
pure virtual

Return the `boundaries' cells of dimension `dim' (or all dimensions less than GetDimension() if -1) that are part of the boundary of the cell.

Precondition
valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
boundaries_exist: boundaries!=0

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::CountNeighbors ( vtkGenericAdaptorCell boundary)
pure virtual

Number of cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' of `this'. `this' IS NOT INCLUDED.

Precondition
boundary_exists: boundary!=0
real_boundary: !boundary->IsInDataSet()
cell_of_the_dataset: IsInDataSet()
boundary: HasBoundary(boundary)
Postcondition
positive_result: result>=0

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::CountEdgeNeighbors ( int sharing)
pure virtual

Number of cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' of `this'. `this' IS NOT INCLUDED.

Precondition
boundary_exists: boundary!=0
real_boundary: !boundary->IsInDataSet()
cell_of_the_dataset: IsInDataSet()
boundary: HasBoundary(boundary)
Postcondition
positive_result: result>=0

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::GetNeighbors ( vtkGenericAdaptorCell boundary,
vtkGenericCellIterator neighbors 
)
pure virtual

Put into `neighbors' the cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' with this cell. `this' IS NOT INCLUDED.

Precondition
boundary_exists: boundary!=0
real_boundary: !boundary->IsInDataSet()
cell_of_the_dataset: IsInDataSet()
boundary: HasBoundary(boundary)
neighbors_exist: neighbors!=0

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::FindClosestBoundary ( int  subId,
double  pcoords[3],
vtkGenericCellIterator *&  boundary 
)
pure virtual

Compute the closest boundary of the current sub-cell `subId' for point `pcoord' (in parametric coordinates) in `boundary', and return whether the point is inside the cell or not. `boundary' is of dimension GetDimension()-1.

Precondition
positive_subId: subId>=0

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::EvaluatePosition ( double  x[3],
double closestPoint,
int subId,
double  pcoords[3],
double dist2 
)
pure virtual

Is `x' inside the current cell? It also evaluates parametric coordinates `pcoords', sub-cell id `subId' (0 means primary cell), distance squared to the sub-cell in `dist2' and closest corner point `closestPoint'. `dist2' and `closestPoint' are not evaluated if `closestPoint'==0. If a numerical error occurred, -1 is returned and all other results should be ignored.

Postcondition
valid_result: result==-1 || result==0 || result==1
positive_distance: result!=-1 implies (closestPoint!=0 implies dist2>=0)

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::EvaluateLocation ( int  subId,
double  pcoords[3],
double  x[3] 
)
pure virtual

Determine the global coordinates `x' from sub-cell `subId' and parametric coordinates `pcoords' in the cell.

Precondition
positive_subId: subId>=0
clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1)

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::InterpolateTuple ( vtkGenericAttribute a,
double  pcoords[3],
double val 
)
pure virtual

Interpolate the attribute `a' at local position `pcoords' of the cell into `val'.

Precondition
a_exists: a!=0
a_is_point_centered: a->GetCentering()==vtkPointCentered
clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 && pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
val_exists: val!=0
valid_size: sizeof(val)==a->GetNumberOfComponents()

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::InterpolateTuple ( vtkGenericAttributeCollection c,
double  pcoords[3],
double val 
)
pure virtual

Interpolate the whole collection of attributes `c' at local position `pcoords' of the cell into `val'. Only point centered attributes are taken into account.

Precondition
c_exists: c!=0
clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 && pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
val_exists: val!=0
valid_size: sizeof(val)==c->GetNumberOfPointCenteredComponents()

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::Contour ( vtkContourValues values,
vtkImplicitFunction f,
vtkGenericAttributeCollection attributes,
vtkGenericCellTessellator tess,
vtkIncrementalPointLocator locator,
vtkCellArray verts,
vtkCellArray lines,
vtkCellArray polys,
vtkPointData outPd,
vtkCellData outCd,
vtkPointData internalPd,
vtkPointData secondaryPd,
vtkCellData secondaryCd 
)
virtual

Generate a contour (contouring primitives) for each `values' or with respect to an implicit function `f'. Contouring is performed on the scalar attribute (`attributes->GetActiveAttribute()' `attributes->GetActiveComponent()'). Contouring interpolates the `attributes->GetNumberOfattributesToInterpolate()' attributes `attributes->GetAttributesToInterpolate()'. The `locator', `verts', `lines', `polys', `outPd' and `outCd' are cumulative data arrays over cell iterations: they store the result of each call to Contour(): - `locator' is a points list that merges points as they are inserted (i.e., prevents duplicates). - `verts' is an array of generated vertices - `lines' is an array of generated lines - `polys' is an array of generated polygons - `outPd' is an array of interpolated point data along the edge (if not-NULL) - `outCd' is an array of copied cell data of the current cell (if not-NULL) `internalPd', `secondaryPd' and `secondaryCd' are initialized by the filter that call it from `attributes'. - `internalPd' stores the result of the tessellation pass: the higher-order cell is tessellated into linear sub-cells. - `secondaryPd' and `secondaryCd' are used internally as inputs to the Contour() method on linear sub-cells. Note: the CopyAllocate() method must be invoked on both `outPd' and `outCd', from `secondaryPd' and `secondaryCd'. NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a `vtkInformation'.

Precondition
values_exist: (values!=0 && f==0) || (values==0 && f!=0)
attributes_exist: attributes!=0
tessellator_exists: tess!=0
locator_exists: locator!=0
verts_exist: verts!=0
lines_exist: lines!=0
polys_exist: polys!=0
internalPd_exists: internalPd!=0
secondaryPd_exists: secondaryPd!=0
secondaryCd_exists: secondaryCd!=0
virtual void vtkGenericAdaptorCell::Clip ( double  value,
vtkImplicitFunction f,
vtkGenericAttributeCollection attributes,
vtkGenericCellTessellator tess,
int  insideOut,
vtkIncrementalPointLocator locator,
vtkCellArray connectivity,
vtkPointData outPd,
vtkCellData outCd,
vtkPointData internalPd,
vtkPointData secondaryPd,
vtkCellData secondaryCd 
)
virtual

Cut (or clip) the current cell with respect to the contour defined by the `value' or the implicit function `f' of the scalar attribute (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()'). If `f' exists, `value' is not used. The output is the part of the current cell which is inside the contour. The output is a set of zero, one or more cells of the same topological dimension as the current cell. Normally, cell points whose scalar value is greater than "value" are considered inside. If `insideOut' is on, this is reversed. Clipping interpolates the `attributes->GetNumberOfattributesToInterpolate()' attributes `attributes->GetAttributesToInterpolate()'. `locator', `connectivity', `outPd' and `outCd' are cumulative data arrays over cell iterations: they store the result of each call to Clip(): - `locator' is a points list that merges points as they are inserted (i.e., prevents duplicates). - `connectivity' is an array of generated cells - `outPd' is an array of interpolated point data along the edge (if not-NULL) - `outCd' is an array of copied cell data of the current cell (if not-NULL) `internalPd', `secondaryPd' and `secondaryCd' are initialized by the filter that call it from `attributes'. - `internalPd' stores the result of the tessellation pass: the higher-order cell is tessellated into linear sub-cells. - `secondaryPd' and `secondaryCd' are used internally as inputs to the Clip() method on linear sub-cells. Note: the CopyAllocate() method must be invoked on both `outPd' and `outCd', from `secondaryPd' and `secondaryCd'. NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a `vtkInformation'.

Precondition
attributes_exist: attributes!=0
tessellator_exists: tess!=0
locator_exists: locator!=0
connectivity_exists: connectivity!=0
internalPd_exists: internalPd!=0
secondaryPd_exists: secondaryPd!=0
secondaryCd_exists: secondaryCd!=0
virtual int vtkGenericAdaptorCell::IntersectWithLine ( double  p1[3],
double  p2[3],
double  tol,
double t,
double  x[3],
double  pcoords[3],
int subId 
)
pure virtual

Is there an intersection between the current cell and the ray (`p1',`p2') according to a tolerance `tol'? If true, `x' is the global intersection, `t' is the parametric coordinate for the line, `pcoords' are the parametric coordinates for cell. `subId' is the sub-cell where the intersection occurs.

Precondition
positive_tolerance: tol>0

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::Derivatives ( int  subId,
double  pcoords[3],
vtkGenericAttribute attribute,
double derivs 
)
pure virtual

Compute derivatives `derivs' of the attribute `attribute' (from its values at the corner points of the cell) given sub-cell `subId' (0 means primary cell) and parametric coordinates `pcoords'. Derivatives are in the x-y-z coordinate directions for each data value.

Precondition
positive_subId: subId>=0
clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1)
attribute_exists: attribute!=0
derivs_exists: derivs!=0
valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::GetBounds ( double  bounds[6])
pure virtual

Compute the bounding box of the current cell in `bounds' in global coordinates. THREAD SAFE

Implemented in vtkBridgeCell.

virtual double* vtkGenericAdaptorCell::GetBounds ( )
virtual

Return the bounding box of the current cell in global coordinates. NOT THREAD SAFE

Postcondition
result_exists: result!=0
valid_size: sizeof(result)>=6

Reimplemented in vtkBridgeCell.

virtual double vtkGenericAdaptorCell::GetLength2 ( )
virtual

Return the bounding box diagonal squared of the current cell.

Postcondition
positive_result: result>=0

Reimplemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetParametricCenter ( double  pcoords[3])
pure virtual

Get the center of the current cell (in parametric coordinates) and place it in `pcoords'. If the current cell is a composite, the return value is the sub-cell id that the center is in.

Postcondition
valid_result: (result>=0) && (IsPrimary() implies result==0)

Implemented in vtkBridgeCell.

virtual double vtkGenericAdaptorCell::GetParametricDistance ( double  pcoords[3])
pure virtual

Return the distance of the parametric coordinate `pcoords' to the current cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.)

Postcondition
positive_result: result>=0

Implemented in vtkBridgeCell.

virtual double* vtkGenericAdaptorCell::GetParametricCoords ( )
pure virtual

Return a contiguous array of parametric coordinates of the corrner points defining the current cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell.

Postcondition
valid_result_exists: ((IsPrimary()) && (result!=0)) || ((!IsPrimary()) && (result==0)) result!=0 implies sizeof(result)==GetNumberOfPoints()

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::Tessellate ( vtkGenericAttributeCollection attributes,
vtkGenericCellTessellator tess,
vtkPoints points,
vtkIncrementalPointLocator locator,
vtkCellArray cellArray,
vtkPointData internalPd,
vtkPointData pd,
vtkCellData cd,
vtkUnsignedCharArray types 
)
virtual

Tessellate the cell if it is not linear or if at least one attribute of `attributes' is not linear. The output are linear cells of the same dimension than the cell. If the cell is linear and all attributes are linear, the output is just a copy of the current cell. `points', `cellArray', `pd' and `cd' are cumulative output data arrays over cell iterations: they store the result of each call to Tessellate(). `internalPd' is initialized by the calling filter and stores the result of the tessellation. If it is not null, `types' is filled with the types of the linear cells. `types' is null when it is called from vtkGenericGeometryFilter and not null when it is called from vtkGenericDatasetTessellator.

Precondition
attributes_exist: attributes!=0
tessellator_exists: tess!=0
points_exist: points!=0
cellArray_exists: cellArray!=0
internalPd_exists: internalPd!=0
pd_exist: pd!=0
cd_exists: cd!=0
virtual int vtkGenericAdaptorCell::IsFaceOnBoundary ( vtkIdType  faceId)
pure virtual

Is the face `faceId' of the current cell on the exterior boundary of the dataset?

Precondition
3d: GetDimension()==3

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::IsOnBoundary ( )
pure virtual

Is the cell on the exterior boundary of the dataset?

Precondition
2d: GetDimension()==2

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::GetPointIds ( vtkIdType id)
pure virtual

Put into `id' the list of the dataset points that define the corner points of the cell.

Precondition
id_exists: id!=0
valid_size: sizeof(id)==GetNumberOfPoints();

Implemented in vtkBridgeCell.

virtual void vtkGenericAdaptorCell::TriangulateFace ( vtkGenericAttributeCollection attributes,
vtkGenericCellTessellator tess,
int  index,
vtkPoints points,
vtkIncrementalPointLocator locator,
vtkCellArray cellArray,
vtkPointData internalPd,
vtkPointData pd,
vtkCellData cd 
)
virtual

Tessellate face `index' of the cell. See Tessellate() for further explanations.

Precondition
cell_is_3d: GetDimension()==3
attributes_exist: attributes!=0
tessellator_exists: tess!=0
valid_face: index>=0
points_exist: points!=0
cellArray_exists: cellArray!=0
internalPd_exists: internalPd!=0
pd_exist: pd!=0
cd_exists: cd!=0
virtual int* vtkGenericAdaptorCell::GetFaceArray ( int  faceId)
pure virtual

Return the ids of the vertices defining face `faceId'. Ids are related to the cell, not to the dataset.

Precondition
is_3d: this->GetDimension()==3
valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
Postcondition
result_exists: result!=0
valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId)

Implemented in vtkBridgeCell.

virtual int vtkGenericAdaptorCell::GetNumberOfVerticesOnFace ( int  faceId)
pure virtual

Return the number of vertices defining face `faceId'.

Precondition
is_3d: this->GetDimension()==3
valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
Postcondition
positive_result: && result>0

Implemented in vtkBridgeCell.

virtual int* vtkGenericAdaptorCell::GetEdgeArray ( int  edgeId)
pure virtual

Return the ids of the vertices defining edge `edgeId'. Ids are related to the cell, not to the dataset.

Precondition
valid_dimension: this->GetDimension()>=2
valid_edgeId_range: edgeId>=0 && edgeId<this->GetNumberOfBoundaries(1)
Postcondition
result_exists: result!=0
valid_size: sizeof(result)==2

Implemented in vtkBridgeCell.

void vtkGenericAdaptorCell::Reset ( )
protected

Reset internal structures.

void vtkGenericAdaptorCell::AllocateTuples ( int  size)
protected

Allocate some memory if Tuples does not exist or is smaller than size.

Precondition
positive_size: size>0

Member Data Documentation

vtkTetra* vtkGenericAdaptorCell::Tetra
protected

Definition at line 510 of file vtkGenericAdaptorCell.h.

vtkTriangle* vtkGenericAdaptorCell::Triangle
protected

Definition at line 511 of file vtkGenericAdaptorCell.h.

vtkLine* vtkGenericAdaptorCell::Line
protected

Definition at line 512 of file vtkGenericAdaptorCell.h.

vtkVertex* vtkGenericAdaptorCell::Vertex
protected

Definition at line 513 of file vtkGenericAdaptorCell.h.

vtkQuad* vtkGenericAdaptorCell::Quad
protected

Definition at line 514 of file vtkGenericAdaptorCell.h.

vtkHexahedron* vtkGenericAdaptorCell::Hexa
protected

Definition at line 515 of file vtkGenericAdaptorCell.h.

vtkWedge* vtkGenericAdaptorCell::Wedge
protected

Definition at line 516 of file vtkGenericAdaptorCell.h.

vtkPyramid* vtkGenericAdaptorCell::Pyramid
protected

Definition at line 517 of file vtkGenericAdaptorCell.h.

vtkDoubleArray* vtkGenericAdaptorCell::InternalPoints
protected

Definition at line 524 of file vtkGenericAdaptorCell.h.

vtkCellArray* vtkGenericAdaptorCell::InternalCellArray
protected

Definition at line 525 of file vtkGenericAdaptorCell.h.

vtkDoubleArray* vtkGenericAdaptorCell::InternalScalars
protected

Definition at line 526 of file vtkGenericAdaptorCell.h.

vtkDoubleArray* vtkGenericAdaptorCell::PointDataScalars
protected

Definition at line 527 of file vtkGenericAdaptorCell.h.

vtkIdList* vtkGenericAdaptorCell::InternalIds
protected

Definition at line 529 of file vtkGenericAdaptorCell.h.

vtkDoubleArray* vtkGenericAdaptorCell::Scalars
protected

Definition at line 532 of file vtkGenericAdaptorCell.h.

vtkPointData* vtkGenericAdaptorCell::PointData
protected

Definition at line 533 of file vtkGenericAdaptorCell.h.

vtkCellData* vtkGenericAdaptorCell::CellData
protected

Definition at line 534 of file vtkGenericAdaptorCell.h.

double* vtkGenericAdaptorCell::Tuples
protected

Definition at line 538 of file vtkGenericAdaptorCell.h.

int vtkGenericAdaptorCell::TuplesCapacity
protected

Definition at line 539 of file vtkGenericAdaptorCell.h.

double vtkGenericAdaptorCell::Bounds[6]
protected

Definition at line 542 of file vtkGenericAdaptorCell.h.


The documentation for this class was generated from the following file: