An algorithm that refines an initial simplicial tessellation using edge subdivision.
More...
|
virtual int | IsA (const char *type) |
|
vtkStreamingTessellator * | NewInstance () const |
|
virtual void | PrintSelf (ostream &os, vtkIndent indent) |
|
|
virtual void | SetTetrahedronCallback (TetrahedronProcessorFunction) |
|
virtual TetrahedronProcessorFunction | GetTetrahedronCallback () const |
|
|
virtual void | SetTriangleCallback (TriangleProcessorFunction) |
|
virtual TriangleProcessorFunction | GetTriangleCallback () const |
|
|
virtual void | SetEdgeCallback (EdgeProcessorFunction) |
|
virtual EdgeProcessorFunction | GetEdgeCallback () const |
|
|
virtual void | SetVertexCallback (VertexProcessorFunction) |
|
virtual VertexProcessorFunction | GetVertexCallback () const |
|
|
virtual void | SetPrivateData (void *Private) |
|
virtual void * | GetPrivateData () const |
|
|
virtual void | SetConstPrivateData (const void *ConstPrivate) |
|
virtual const void * | GetConstPrivateData () const |
|
|
virtual void | SetSubdivisionAlgorithm (vtkEdgeSubdivisionCriterion *) |
|
virtual vtkEdgeSubdivisionCriterion * | GetSubdivisionAlgorithm () |
|
virtual const vtkEdgeSubdivisionCriterion * | GetSubdivisionAlgorithm () const |
|
|
virtual void | SetEmbeddingDimension (int k, int d) |
|
int | GetEmbeddingDimension (int k) const |
|
|
virtual void | SetFieldSize (int k, int s) |
|
int | GetFieldSize (int k) const |
|
|
virtual void | SetMaximumNumberOfSubdivisions (int num_subdiv_in) |
|
int | GetMaximumNumberOfSubdivisions () |
|
|
void | AdaptivelySample3Facet (double *v1, double *v2, double *v3, double *v4) const |
|
void | AdaptivelySample2Facet (double *v1, double *v2, double *v3) const |
|
void | AdaptivelySample1Facet (double *v1, double *v2) const |
|
void | AdaptivelySample0Facet (double *v1) const |
|
|
void | ResetCounts () |
|
vtkIdType | GetCaseCount (int c) |
|
vtkIdType | GetSubcaseCount (int casenum, int sub) |
|
vtkObject * | NewInstance () const |
|
virtual void | DebugOn () |
|
virtual void | DebugOff () |
|
bool | GetDebug () |
|
void | SetDebug (bool debugFlag) |
|
virtual void | Modified () |
|
virtual unsigned long | GetMTime () |
|
unsigned long | AddObserver (unsigned long event, vtkCommand *, float priority=0.0f) |
|
unsigned long | AddObserver (const char *event, vtkCommand *, float priority=0.0f) |
|
vtkCommand * | GetCommand (unsigned long tag) |
|
void | RemoveObserver (vtkCommand *) |
|
void | RemoveObservers (unsigned long event, vtkCommand *) |
|
void | RemoveObservers (const char *event, vtkCommand *) |
|
int | HasObserver (unsigned long event, vtkCommand *) |
|
int | HasObserver (const char *event, vtkCommand *) |
|
void | RemoveObserver (unsigned long tag) |
|
void | RemoveObservers (unsigned long event) |
|
void | RemoveObservers (const char *event) |
|
void | RemoveAllObservers () |
|
int | HasObserver (unsigned long event) |
|
int | HasObserver (const char *event) |
|
template<class U , class T > |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f) |
|
template<class U , class T > |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
|
template<class U , class T > |
unsigned long | AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
|
int | InvokeEvent (unsigned long event, void *callData) |
|
int | InvokeEvent (const char *event, void *callData) |
|
int | InvokeEvent (unsigned long event) |
|
int | InvokeEvent (const char *event) |
|
const char * | GetClassName () const |
|
virtual void | Delete () |
|
virtual void | FastDelete () |
|
void | Print (ostream &os) |
|
virtual void | Register (vtkObjectBase *o) |
|
virtual void | UnRegister (vtkObjectBase *o) |
|
void | SetReferenceCount (int) |
|
void | PrintRevisions (ostream &) |
|
virtual void | PrintHeader (ostream &os, vtkIndent indent) |
|
virtual void | PrintTrailer (ostream &os, vtkIndent indent) |
|
int | GetReferenceCount () |
|
|
virtual vtkObjectBase * | NewInstanceInternal () const |
|
| vtkStreamingTessellator () |
|
| ~vtkStreamingTessellator () |
|
void | AdaptivelySample3Facet (double *v1, double *v2, double *v3, double *v4, int maxDepth) const |
|
void | AdaptivelySample2Facet (double *v1, double *v2, double *v3, int maxDepth, int move=7) const |
|
void | AdaptivelySample1Facet (double *v1, double *v2, int maxDepth) const |
|
int | BestTets (int *, double **, int, int) const |
|
| vtkObject () |
|
virtual | ~vtkObject () |
|
virtual void | RegisterInternal (vtkObjectBase *, int check) |
|
virtual void | UnRegisterInternal (vtkObjectBase *, int check) |
|
void | InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=NULL) |
|
void | InternalReleaseFocus () |
|
| vtkObjectBase () |
|
virtual | ~vtkObjectBase () |
|
virtual void | CollectRevisions (ostream &) |
|
virtual void | ReportReferences (vtkGarbageCollector *) |
|
| vtkObjectBase (const vtkObjectBase &) |
|
void | operator= (const vtkObjectBase &) |
|
An algorithm that refines an initial simplicial tessellation using edge subdivision.
$Date$ $Revision$
This class is a simple algorithm that takes a single starting simplex – a tetrahedron, triangle, or line segment – and calls a function you pass it with (possibly many times) tetrahedra, triangles, or lines adaptively sampled from the one you specified. It uses an algorithm you specify to control the level of adaptivity.
This class does not create vtkUnstructuredGrid output because it is intended for use in mappers as well as filters. Instead, it calls the registered function with simplices as they are created.
The subdivision algorithm should change the vertex coordinates (it must change both geometric and, if desired, parametric coordinates) of the midpoint. These coordinates need not be changed unless the EvaluateEdge() member returns true. The vtkStreamingTessellator itself has no way of creating a more accurate midpoint vertex.
Here's how to use this class:
- Call AdaptivelySample1Facet, AdaptivelySample2Facet, or AdaptivelySample3Facet, with an edge, triangle, or tetrahedron you want tessellated.
- The adaptive tessellator classifies each edge by passing the midpoint values to the vtkEdgeSubdivisionCriterion.
- After each edge is classified, the tessellator subdivides edges as required until the subdivision criterion is satisfied or the maximum subdivision depth has been reached.
Edges, triangles, or tetrahedra connecting the vertices generated by the subdivision algorithm are processed by calling the user-defined callback functions (set with SetTetrahedronCallback(), SetTriangleCallback(), or SetEdgeCallback() ).
- Warning
- Note that the vertices passed to AdaptivelySample3Facet, AdaptivelySample2Facet, or AdaptivelySample1Facet must be at least 6, 5, or 4 entries long, respectively! This is because the <r,s,t>, <r,s>, or <r> parametric coordinates of the vertices are maintained as the facet is subdivided. This information is often required by the subdivision algorithm in order to compute an error metric. You may change the number of parametric coordinates associated with each vertex using vtkStreamingTessellator::SetEmbeddingDimension().
- Interpolating Field Values:
- If you wish, you may also use
vtkStreamingTessellator
to interpolate field values at newly created vertices. Interpolated field values are stored just beyond the parametric coordinates associated with a vertex. They will always be double
values; it does not make sense to interpolate a boolean or string value and your output and subdivision subroutines may always cast to a float
or use floor()
to truncate an interpolated value to an integer.
- See also
- vtkEdgeSubdivisionCriterion
- Tests:
- vtkStreamingTessellator (Tests)
Definition at line 90 of file vtkStreamingTessellator.h.
virtual void vtkStreamingTessellator::SetEmbeddingDimension |
( |
int |
k, |
|
|
int |
d |
|
) |
| |
|
virtual |
Get/Set the number of parameter-space coordinates associated with each input and output point. The default is k for k -facets. You may specify a different dimension, d, for each type of k -facet to be processed. For example, SetEmbeddingDimension
( 2
, 3
) would associate r, s, and t coordinates with each input and output point generated by AdaptivelySample2Facet
but does not say anything about input or output points generated by AdaptivelySample1Facet
. Call SetEmbeddingDimension
( -1
, d ) to specify the same dimension for all possible k values. d may not exceed 8, as that would be plain silly.
int vtkStreamingTessellator::GetEmbeddingDimension |
( |
int |
k | ) |
const |
|
inline |
Get/Set the number of parameter-space coordinates associated with each input and output point. The default is k for k -facets. You may specify a different dimension, d, for each type of k -facet to be processed. For example, SetEmbeddingDimension
( 2
, 3
) would associate r, s, and t coordinates with each input and output point generated by AdaptivelySample2Facet
but does not say anything about input or output points generated by AdaptivelySample1Facet
. Call SetEmbeddingDimension
( -1
, d ) to specify the same dimension for all possible k values. d may not exceed 8, as that would be plain silly.
Definition at line 335 of file vtkStreamingTessellator.h.
virtual void vtkStreamingTessellator::SetFieldSize |
( |
int |
k, |
|
|
int |
s |
|
) |
| |
|
virtual |
Get/Set the number of field value coordinates associated with each input and output point. The default is 0; no field values are interpolated. You may specify a different size, s, for each type of k -facet to be processed. For example, SetFieldSize
( 2
, 3
) would associate 3 field value coordinates with each input and output point of an AdaptivelySample2Facet
call, but does not say anything about input or output points of AdaptivelySample1Facet
. Call SetFieldSize
( -1
, s ) to specify the same dimension for all possible k values. s may not exceed vtkStreamingTessellator::MaxFieldSize. This is a compile-time constant that defaults to 18, which is large enough for a scalar, vector, tensor, normal, and texture coordinate to be included at each point. Normally, you will not call SetFieldSize() directly; instead, subclasses of vtkEdgeSubdivisionCriterion, such as vtkShoeMeshSubdivisionAlgorithm, will call it for you. In any event, setting FieldSize to a non-zero value means you must pass field values to the AdaptivelySamplekFacet
routines; For example,
vtkStreamingTessellator* t =
vtkStreamingTessellator::New(); t->SetFieldSize( 1, 3 );
t->SetEmbeddingDimension( 1, 1 ); // not really required, this is
the default double p0[3+1+3] = { x0, y0, z0, r0, fx0, fy0, fz0 };
double p1[3+1+3] = { x1, y1, z1, r1, fx1, fy1, fz1 };
t->AdaptivelySample1Facet( p0, p1 );
This would adaptively sample an curve (1-facet) with geometry and a vector field at every output point on the curve.
int vtkStreamingTessellator::GetFieldSize |
( |
int |
k | ) |
const |
|
inline |
Get/Set the number of field value coordinates associated with each input and output point. The default is 0; no field values are interpolated. You may specify a different size, s, for each type of k -facet to be processed. For example, SetFieldSize
( 2
, 3
) would associate 3 field value coordinates with each input and output point of an AdaptivelySample2Facet
call, but does not say anything about input or output points of AdaptivelySample1Facet
. Call SetFieldSize
( -1
, s ) to specify the same dimension for all possible k values. s may not exceed vtkStreamingTessellator::MaxFieldSize. This is a compile-time constant that defaults to 18, which is large enough for a scalar, vector, tensor, normal, and texture coordinate to be included at each point. Normally, you will not call SetFieldSize() directly; instead, subclasses of vtkEdgeSubdivisionCriterion, such as vtkShoeMeshSubdivisionAlgorithm, will call it for you. In any event, setting FieldSize to a non-zero value means you must pass field values to the AdaptivelySamplekFacet
routines; For example,
vtkStreamingTessellator* t =
vtkStreamingTessellator::New(); t->SetFieldSize( 1, 3 );
t->SetEmbeddingDimension( 1, 1 ); // not really required, this is
the default double p0[3+1+3] = { x0, y0, z0, r0, fx0, fy0, fz0 };
double p1[3+1+3] = { x1, y1, z1, r1, fx1, fy1, fz1 };
t->AdaptivelySample1Facet( p0, p1 );
This would adaptively sample an curve (1-facet) with geometry and a vector field at every output point on the curve.
Definition at line 338 of file vtkStreamingTessellator.h.