36 #ifndef vtkQuadraticWedge_h 
   37 #define vtkQuadraticWedge_h 
   73                        int& subId, 
double pcoords[3],
 
   74                        double& dist2, 
double *weights);
 
   78   void Derivatives(
int subId, 
double pcoords[3], 
double *values,
 
   79                    int dim, 
double *derivs);
 
   97                         double x[3], 
double pcoords[3], 
int& subId);
 
  106   static void InterpolationFunctions(
double pcoords[3], 
double weights[15]);
 
  109   static void InterpolationDerivs(
double pcoords[3], 
double derivs[45]);
 
  125   static int *GetEdgeArray(
int edgeId);
 
  126   static int *GetFaceArray(
int faceId);
 
  132   void JacobianInverse(
double pcoords[3], 
double **inverse, 
double derivs[45]);
 
  158   pcoords[0] = pcoords[1] = 1./3;
 
static void InterpolationDerivs(double pcoords[3], double derivs[45])
 
represent and manipulate point attribute data 
 
vtkDoubleArray * CellScalars
 
virtual double * GetParametricCoords()
 
represent and manipulate cell attribute data 
 
Abstract class in support of both point location and point insertion. 
 
virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts)=0
 
virtual void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights)=0
 
virtual int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights)=0
 
abstract superclass for non-linear cells 
 
dynamic, self-adjusting array of double 
 
abstract class to specify cell behavior 
 
virtual void InterpolateDerivs(double pcoords[3], double derivs[45])
 
cell represents a parabolic, 8-node isoparametric quad 
 
a simple class to control print indentation 
 
static void InterpolationFunctions(double pcoords[3], double weights[15])
 
list of point or cell ids 
 
virtual void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs)=0
 
abstract superclass for arrays of numeric data 
 
virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)=0
 
virtual void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut)=0
 
void PrintSelf(ostream &os, vtkIndent indent)
 
virtual vtkCell * GetFace(int faceId)=0
 
object to represent cell connectivity 
 
virtual vtkCell * GetEdge(int edgeId)=0
 
cell represents a parabolic, isoparametric edge 
 
virtual void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)=0
 
cell represents a parabolic, isoparametric triangle 
 
cell represents a parabolic, 15-node isoparametric wedge 
 
vtkQuadraticTriangle * TriangleFace
 
int GetParametricCenter(double pcoords[3])
 
virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts)=0
 
virtual void InterpolateFunctions(double pcoords[3], double weights[15])
 
virtual int GetParametricCenter(double pcoords[3])
 
#define VTKCOMMONDATAMODEL_EXPORT
 
a 3D cell that represents a linear wedge 
 
represent and manipulate 3D points