65                        int& subId, 
double pcoords[3],
 
   66                        double& dist2, 
double *weights);
 
   70   void Derivatives(
int subId, 
double pcoords[3], 
double *values,
 
   71                    int dim, 
double *derivs);
 
   90   static void InterpolationFunctions(
double pcoords[3], 
double sf[3]);
 
   92   static void InterpolationDerivs(
double pcoords[3], 
double derivs[6]);
 
  107   int *GetEdgeArray(
int edgeId);
 
  113                         double x[3], 
double pcoords[3], 
int& subId);
 
  125   static void TriangleCenter(
double p1[3], 
double p2[3], 
double p3[3],
 
  131   static double TriangleArea(
double p1[3], 
double p2[3], 
double p3[3]);
 
  138   static double Circumcircle(
double  p1[2], 
double p2[2], 
double p3[2],
 
  154   static int BarycentricCoords(
double x[2], 
double  x1[2], 
double x2[2],
 
  155                                double x3[2], 
double bcoords[3]);
 
  163   static int ProjectTo2D(
double x1[3], 
double x2[3], 
double x3[3],
 
  164                          double v1[2], 
double v2[2], 
double v3[2]);
 
  175   static void ComputeNormal(
double v1[3], 
double v2[3], 
double v3[3], 
double n[3]);
 
  180   static void ComputeNormalDirection(
double v1[3], 
double v2[3], 
double v3[3],
 
  190   static int PointInTriangle(
double x[3], 
double x1[3],
 
  191                              double x2[3], 
double x3[3],
 
  199   static void ComputeQuadric(
double x1[3], 
double x2[3], 
double x3[3],
 
  200                              double quadric[4][4]);
 
  201   static void ComputeQuadric(
double x1[3], 
double x2[3], 
double x3[3],
 
  220   pcoords[0] = pcoords[1] = 1./3; pcoords[2] = 0.0;
 
  226                                        double v3[3], 
double n[3])
 
  228   double ax, ay, az, bx, by, bz;
 
  231   ax = v3[0] - v2[0]; ay = v3[1] - v2[1]; az = v3[2] - v2[2];
 
  232   bx = v1[0] - v2[0]; by = v1[1] - v2[1]; bz = v1[2] - v2[2];
 
  234   n[0] = (ay * bz - az * by);
 
  235   n[1] = (az * bx - ax * bz);
 
  236   n[2] = (ax * by - ay * bx);
 
  241                                        double v3[3], 
double n[3])
 
  247   if ( (length = sqrt((n[0]*n[0] + n[1]*n[1] + n[2]*n[2]))) != 0.0 )
 
  257                                         double p3[3], 
double center[3])
 
  259   center[0] = (p1[0]+p2[0]+p3[0]) / 3.0;
 
  260   center[1] = (p1[1]+p2[1]+p3[1]) / 3.0;
 
  261   center[2] = (p1[2]+p2[2]+p3[2]) / 3.0;
 
static void InterpolationDerivs(double pcoords[3], double derivs[6])
 
represent and manipulate point attribute data 
 
void PrintSelf(ostream &os, vtkIndent indent)
 
virtual double * GetParametricCoords()
 
virtual void InterpolateDerivs(double pcoords[3], double derivs[6])
 
represent and manipulate cell attribute data 
 
virtual void InterpolateFunctions(double pcoords[3], double sf[3])
 
Abstract class in support of both point location and point insertion. 
 
virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts)=0
 
virtual void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights)=0
 
virtual int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights)=0
 
static void ComputeNormalDirection(double v1[3], double v2[3], double v3[3], double n[3])
 
static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3])
 
cell represents a 1D line 
 
abstract class to specify cell behavior 
 
virtual double GetParametricDistance(double pcoords[3])
 
static void InterpolationFunctions(double pcoords[3], double sf[3])
 
a simple class to control print indentation 
 
evaluate implicit quadric function 
 
list of point or cell ids 
 
virtual void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs)=0
 
abstract superclass for arrays of numeric data 
 
virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)=0
 
virtual void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut)=0
 
static void TriangleCenter(double p1[3], double p2[3], double p3[3], double center[3])
 
object to represent cell connectivity 
 
virtual vtkCell * GetEdge(int edgeId)=0
 
a cell that represents a triangle 
 
int GetParametricCenter(double pcoords[3])
 
virtual void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)=0
 
virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts)=0
 
static float Norm(const float *x, int n)
 
virtual int GetParametricCenter(double pcoords[3])
 
#define VTKCOMMONDATAMODEL_EXPORT
 
represent and manipulate 3D points 
 
static double TriangleArea(double p1[3], double p2[3], double p3[3])