VTK
|
abstract class to specify 3D cell interface More...
#include <vtkCell3D.h>
Public Types | |
typedef vtkCell | Superclass |
Public Types inherited from vtkCell | |
typedef vtkObject | Superclass |
Public Member Functions | |
virtual int | IsA (const char *type) |
Return 1 if this class is the same type of (or a subclass of) the named class. More... | |
vtkCell3D * | NewInstance () const |
void | PrintSelf (ostream &os, vtkIndent indent) override |
Methods invoked by print to print information about the object including superclasses. More... | |
virtual void | GetEdgePoints (int edgeId, int *&pts)=0 |
Get the pair of vertices that define an edge. More... | |
virtual void | GetFacePoints (int faceId, int *&pts)=0 |
Get the list of vertices that define a face. More... | |
void | Contour (double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override |
Generate contouring primitives. More... | |
void | Clip (double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override |
Cut (or clip) the cell based on the input cellScalars and the specified value. More... | |
int | GetCellDimension () override |
The topological dimension of the cell. More... | |
virtual void | SetMergeTolerance (double) |
Set the tolerance for merging clip intersection points that are near the vertices of cells. More... | |
virtual double | GetMergeTolerance () |
Set the tolerance for merging clip intersection points that are near the vertices of cells. More... | |
Public Member Functions inherited from vtkCell | |
vtkCell * | NewInstance () const |
void | Initialize (int npts, vtkIdType *pts, vtkPoints *p) |
Initialize cell from outside with point ids and point coordinates specified. More... | |
virtual void | ShallowCopy (vtkCell *c) |
Copy this cell by reference counting the internal data structures. More... | |
virtual void | DeepCopy (vtkCell *c) |
Copy this cell by completely copying internal data structures. More... | |
virtual int | GetCellType ()=0 |
Return the type of cell. More... | |
virtual int | IsLinear () |
Non-linear cells require special treatment beyond the usual cell type and connectivity list information. More... | |
virtual int | RequiresInitialization () |
Some cells require initialization prior to access. More... | |
virtual void | Initialize () |
virtual int | IsExplicitCell () |
Explicit cells require additional representational information beyond the usual cell type and connectivity list information. More... | |
virtual int | RequiresExplicitFaceRepresentation () |
Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods). More... | |
virtual void | SetFaces (vtkIdType *vtkNotUsed(faces)) |
virtual vtkIdType * | GetFaces () |
vtkPoints * | GetPoints () |
Get the point coordinates for the cell. More... | |
vtkIdType | GetNumberOfPoints () |
Return the number of points in the cell. More... | |
virtual int | GetNumberOfEdges ()=0 |
Return the number of edges in the cell. More... | |
virtual int | GetNumberOfFaces ()=0 |
Return the number of faces in the cell. More... | |
vtkIdList * | GetPointIds () |
Return the list of point ids defining the cell. More... | |
vtkIdType | GetPointId (int ptId) |
For cell point i, return the actual point id. More... | |
virtual vtkCell * | GetEdge (int edgeId)=0 |
Return the edge cell from the edgeId of the cell. More... | |
virtual vtkCell * | GetFace (int faceId)=0 |
Return the face cell from the faceId of the cell. More... | |
virtual int | CellBoundary (int subId, double pcoords[3], vtkIdList *pts)=0 |
Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. More... | |
virtual int | EvaluatePosition (double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights)=0 |
Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. More... | |
virtual void | EvaluateLocation (int &subId, double pcoords[3], double x[3], double *weights)=0 |
Determine global coordinate (x[3]) from subId and parametric coordinates. More... | |
virtual int | IntersectWithLine (double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)=0 |
Intersect with a ray. More... | |
virtual int | Triangulate (int index, vtkIdList *ptIds, vtkPoints *pts)=0 |
Generate simplices of proper dimension. More... | |
virtual void | Derivatives (int subId, double pcoords[3], double *values, int dim, double *derivs)=0 |
Compute derivatives given cell subId and parametric coordinates. More... | |
void | GetBounds (double bounds[6]) |
Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). More... | |
double * | GetBounds () |
Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). More... | |
double | GetLength2 () |
Compute Length squared of cell (i.e., bounding box diagonal squared). More... | |
virtual int | GetParametricCenter (double pcoords[3]) |
Return center of the cell in parametric coordinates. More... | |
virtual double | GetParametricDistance (double pcoords[3]) |
Return the distance of the parametric coordinate provided to the cell. More... | |
virtual int | IsPrimaryCell () |
Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). More... | |
virtual double * | GetParametricCoords () |
Return a contiguous array of parametric coordinates of the points defining this cell. More... | |
virtual void | InterpolateFunctions (double vtkNotUsed(pcoords)[3], double *vtkNotUsed(weight)) |
Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. More... | |
virtual void | InterpolateDerivs (double vtkNotUsed(pcoords)[3], double *vtkNotUsed(derivs)) |
Public Member Functions inherited from vtkObject | |
vtkBaseTypeMacro (vtkObject, vtkObjectBase) | |
virtual void | DebugOn () |
Turn debugging output on. More... | |
virtual void | DebugOff () |
Turn debugging output off. More... | |
bool | GetDebug () |
Get the value of the debug flag. More... | |
void | SetDebug (bool debugFlag) |
Set the value of the debug flag. More... | |
virtual void | Modified () |
Update the modification time for this object. More... | |
virtual vtkMTimeType | GetMTime () |
Return this object's modified time. More... | |
void | RemoveObserver (unsigned long tag) |
void | RemoveObservers (unsigned long event) |
void | RemoveObservers (const char *event) |
void | RemoveAllObservers () |
int | HasObserver (unsigned long event) |
int | HasObserver (const char *event) |
int | InvokeEvent (unsigned long event) |
int | InvokeEvent (const char *event) |
unsigned long | AddObserver (unsigned long event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
unsigned long | AddObserver (const char *event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkCommand * | GetCommand (unsigned long tag) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObserver (vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
int | HasObserver (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
int | HasObserver (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Allow user to set the AbortFlagOn() with the return value of the callback method. More... | |
int | InvokeEvent (unsigned long event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
int | InvokeEvent (const char *event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
Public Member Functions inherited from vtkObjectBase | |
const char * | GetClassName () const |
Return the class name as a string. More... | |
virtual void | Delete () |
Delete a VTK object. More... | |
virtual void | FastDelete () |
Delete a reference to this object. More... | |
void | InitializeObjectBase () |
void | Print (ostream &os) |
Print an object to an ostream. More... | |
virtual void | Register (vtkObjectBase *o) |
Increase the reference count (mark as used by another object). More... | |
virtual void | UnRegister (vtkObjectBase *o) |
Decrease the reference count (release by another object). More... | |
int | GetReferenceCount () |
Return the current reference count of this object. More... | |
void | SetReferenceCount (int) |
Sets the reference count. More... | |
void | PrintRevisions (ostream &) |
Legacy. More... | |
virtual void | PrintHeader (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
virtual void | PrintTrailer (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
Static Public Member Functions | |
static int | IsTypeOf (const char *type) |
static vtkCell3D * | SafeDownCast (vtkObjectBase *o) |
Static Public Member Functions inherited from vtkCell | |
static int | IsTypeOf (const char *type) |
static vtkCell * | SafeDownCast (vtkObjectBase *o) |
Static Public Member Functions inherited from vtkObject | |
static vtkObject * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
static void | BreakOnError () |
This method is called when vtkErrorMacro executes. More... | |
static void | SetGlobalWarningDisplay (int val) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOn () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOff () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static int | GetGlobalWarningDisplay () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
Static Public Member Functions inherited from vtkObjectBase | |
static vtkTypeBool | IsTypeOf (const char *name) |
Return 1 if this class type is the same type of (or a subclass of) the named class. More... | |
static vtkObjectBase * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
Protected Member Functions | |
virtual vtkObjectBase * | NewInstanceInternal () const |
vtkCell3D () | |
~vtkCell3D () override | |
Protected Member Functions inherited from vtkCell | |
vtkCell () | |
~vtkCell () override | |
Protected Member Functions inherited from vtkObject | |
vtkObject () | |
~vtkObject () override | |
void | RegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=NULL) |
These methods allow a command to exclusively grab all events. More... | |
void | InternalReleaseFocus () |
These methods allow a command to exclusively grab all events. More... | |
Protected Member Functions inherited from vtkObjectBase | |
vtkObjectBase () | |
virtual | ~vtkObjectBase () |
virtual void | CollectRevisions (ostream &) |
virtual void | ReportReferences (vtkGarbageCollector *) |
vtkObjectBase (const vtkObjectBase &) | |
void | operator= (const vtkObjectBase &) |
Protected Attributes | |
vtkOrderedTriangulator * | Triangulator |
double | MergeTolerance |
vtkTetra * | ClipTetra |
vtkDoubleArray * | ClipScalars |
Protected Attributes inherited from vtkCell | |
double | Bounds [6] |
Protected Attributes inherited from vtkObject | |
bool | Debug |
vtkTimeStamp | MTime |
vtkSubjectHelper * | SubjectHelper |
Protected Attributes inherited from vtkObjectBase | |
vtkAtomicInt32 | ReferenceCount |
vtkWeakPointerBase ** | WeakPointers |
Additional Inherited Members | |
Public Attributes inherited from vtkCell | |
vtkPoints * | Points |
vtkIdList * | PointIds |
abstract class to specify 3D cell interface
vtkCell3D is an abstract class that extends the interfaces for 3D data cells, and implements methods needed to satisfy the vtkCell API. The 3D cells include hexehedra, tetrahedra, wedge, pyramid, and voxel.
Definition at line 38 of file vtkCell3D.h.
typedef vtkCell vtkCell3D::Superclass |
Definition at line 41 of file vtkCell3D.h.
|
protected |
|
overrideprotected |
|
static |
|
virtual |
Return 1 if this class is the same type of (or a subclass of) the named class.
Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.
Reimplemented from vtkCell.
Reimplemented in vtkPolyhedron, vtkPentagonalPrism, vtkPyramid, vtkWedge, vtkHexagonalPrism, vtkHexahedron, vtkTetra, vtkConvexPointSet, and vtkVoxel.
|
static |
|
protectedvirtual |
Reimplemented from vtkCell.
Reimplemented in vtkPolyhedron, vtkPentagonalPrism, vtkPyramid, vtkWedge, vtkHexagonalPrism, vtkHexahedron, vtkTetra, vtkConvexPointSet, and vtkVoxel.
vtkCell3D* vtkCell3D::NewInstance | ( | ) | const |
|
overridevirtual |
Methods invoked by print to print information about the object including superclasses.
Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from vtkCell.
Reimplemented in vtkPolyhedron, vtkPentagonalPrism, vtkPyramid, vtkWedge, vtkHexagonalPrism, vtkHexahedron, vtkTetra, vtkConvexPointSet, and vtkVoxel.
Get the pair of vertices that define an edge.
The method returns the number of vertices, along with an array of vertices. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The edgeId must range between 0<=edgeId<this->GetNumberOfEdges().
Implemented in vtkPentagonalPrism, vtkPyramid, vtkWedge, vtkHexagonalPrism, vtkHexahedron, vtkTetra, and vtkVoxel.
Get the list of vertices that define a face.
The list is terminated with a negative number. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The faceId must range between 0<=faceId<this->GetNumberOfFaces().
Implemented in vtkPentagonalPrism, vtkPyramid, vtkWedge, vtkHexagonalPrism, vtkHexahedron, vtkTetra, and vtkVoxel.
|
overridevirtual |
Generate contouring primitives.
The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is NULL, then no interpolation is performed. Also, if the output cell data is non-NULL, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)
Implements vtkCell.
Reimplemented in vtkPolyhedron, vtkConvexPointSet, vtkPyramid, vtkWedge, vtkHexahedron, vtkTetra, and vtkVoxel.
|
overridevirtual |
Cut (or clip) the cell based on the input cellScalars and the specified value.
The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-NULL, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) (Satisfies vtkCell API.)
Implements vtkCell.
Reimplemented in vtkPolyhedron, vtkConvexPointSet, and vtkTetra.
|
inlineoverridevirtual |
The topological dimension of the cell.
(Satisfies vtkCell API.)
Implements vtkCell.
Reimplemented in vtkPentagonalPrism, vtkPyramid, vtkWedge, vtkHexagonalPrism, and vtkVoxel.
Definition at line 90 of file vtkCell3D.h.
|
virtual |
Set the tolerance for merging clip intersection points that are near the vertices of cells.
This tolerance is used to prevent the generation of degenerate tetrahedra during clipping.
|
virtual |
Set the tolerance for merging clip intersection points that are near the vertices of cells.
This tolerance is used to prevent the generation of degenerate tetrahedra during clipping.
|
protected |
Definition at line 106 of file vtkCell3D.h.
|
protected |
Definition at line 107 of file vtkCell3D.h.
|
protected |
Definition at line 110 of file vtkCell3D.h.
|
protected |
Definition at line 111 of file vtkCell3D.h.