VTK
|
selectively filter points More...
#include <vtkMaskPoints.h>
Public Types | |
typedef vtkPolyDataAlgorithm | Superclass |
![]() | |
typedef vtkAlgorithm | Superclass |
![]() | |
enum | DesiredOutputPrecision { SINGLE_PRECISION, DOUBLE_PRECISION, DEFAULT_PRECISION } |
Values used for setting the desired output precision for various algorithms. More... | |
typedef vtkObject | Superclass |
Public Member Functions | |
virtual int | IsA (const char *type) |
Return 1 if this class is the same type of (or a subclass of) the named class. More... | |
vtkMaskPoints * | NewInstance () const |
void | PrintSelf (ostream &os, vtkIndent indent) override |
Methods invoked by print to print information about the object including superclasses. More... | |
virtual void | SetOnRatio (int) |
Turn on every nth point (strided sampling), ignored by random modes. More... | |
virtual int | GetOnRatio () |
Turn on every nth point (strided sampling), ignored by random modes. More... | |
virtual void | SetMaximumNumberOfPoints (vtkIdType) |
Limit the number of points that can be passed through (i.e., sets the output sample size). More... | |
virtual vtkIdType | GetMaximumNumberOfPoints () |
Limit the number of points that can be passed through (i.e., sets the output sample size). More... | |
virtual void | SetOffset (vtkIdType) |
Start sampling with this point. More... | |
virtual vtkIdType | GetOffset () |
Start sampling with this point. More... | |
virtual void | SetRandomMode (int) |
Special flag causes randomization of point selection. More... | |
virtual int | GetRandomMode () |
Special flag causes randomization of point selection. More... | |
virtual void | RandomModeOn () |
Special flag causes randomization of point selection. More... | |
virtual void | RandomModeOff () |
Special flag causes randomization of point selection. More... | |
virtual void | SetRandomModeType (int) |
Special mode selector that switches between random mode types. More... | |
virtual int | GetRandomModeType () |
Special mode selector that switches between random mode types. More... | |
virtual void | SetProportionalMaximumNumberOfPoints (int) |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL. More... | |
virtual int | GetProportionalMaximumNumberOfPoints () |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL. More... | |
virtual void | ProportionalMaximumNumberOfPointsOn () |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL. More... | |
virtual void | ProportionalMaximumNumberOfPointsOff () |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL. More... | |
virtual void | SetGenerateVertices (int) |
Generate output polydata vertices as well as points. More... | |
virtual int | GetGenerateVertices () |
Generate output polydata vertices as well as points. More... | |
virtual void | GenerateVerticesOn () |
Generate output polydata vertices as well as points. More... | |
virtual void | GenerateVerticesOff () |
Generate output polydata vertices as well as points. More... | |
virtual void | SetSingleVertexPerCell (int) |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag. More... | |
virtual int | GetSingleVertexPerCell () |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag. More... | |
virtual void | SingleVertexPerCellOn () |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag. More... | |
virtual void | SingleVertexPerCellOff () |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag. More... | |
virtual void | SetOutputPointsPrecision (int) |
Set/get the desired precision for the output types. More... | |
virtual int | GetOutputPointsPrecision () |
Set/get the desired precision for the output types. More... | |
![]() | |
vtkPolyDataAlgorithm * | NewInstance () const |
int | ProcessRequest (vtkInformation *, vtkInformationVector **, vtkInformationVector *) override |
see vtkAlgorithm for details More... | |
vtkDataObject * | GetInput () |
vtkDataObject * | GetInput (int port) |
vtkPolyData * | GetPolyDataInput (int port) |
vtkPolyData * | GetOutput () |
Get the output data object for a port on this algorithm. More... | |
vtkPolyData * | GetOutput (int) |
Get the output data object for a port on this algorithm. More... | |
virtual void | SetOutput (vtkDataObject *d) |
Get the output data object for a port on this algorithm. More... | |
void | SetInputData (vtkDataObject *) |
Assign a data object as input. More... | |
void | SetInputData (int, vtkDataObject *) |
Assign a data object as input. More... | |
void | AddInputData (vtkDataObject *) |
Assign a data object as input. More... | |
void | AddInputData (int, vtkDataObject *) |
Assign a data object as input. More... | |
![]() | |
vtkAlgorithm * | NewInstance () const |
int | HasExecutive () |
Check whether this algorithm has an assigned executive. More... | |
vtkExecutive * | GetExecutive () |
Get this algorithm's executive. More... | |
virtual void | SetExecutive (vtkExecutive *executive) |
Set this algorithm's executive. More... | |
int | ProcessRequest (vtkInformation *request, vtkCollection *inInfo, vtkInformationVector *outInfo) |
Version of ProcessRequest() that is wrapped. More... | |
virtual int | ComputePipelineMTime (vtkInformation *request, vtkInformationVector **inInfoVec, vtkInformationVector *outInfoVec, int requestFromOutputPort, vtkMTimeType *mtime) |
A special version of ProcessRequest meant specifically for the pipeline modified time request. More... | |
virtual int | ModifyRequest (vtkInformation *request, int when) |
This method gives the algorithm a chance to modify the contents of a request before or after (specified in the when argument) it is forwarded. More... | |
vtkInformation * | GetInputPortInformation (int port) |
Get the information object associated with an input port. More... | |
vtkInformation * | GetOutputPortInformation (int port) |
Get the information object associated with an output port. More... | |
int | GetNumberOfInputPorts () |
Get the number of input ports used by the algorithm. More... | |
int | GetNumberOfOutputPorts () |
Get the number of output ports provided by the algorithm. More... | |
void | UpdateProgress (double amount) |
Update the progress of the process object. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, const char *fieldAssociation, const char *attributeTypeorName) |
String based versions of SetInputArrayToProcess(). More... | |
vtkInformation * | GetInputArrayInformation (int idx) |
Get the info object for the specified input array to this algorithm. More... | |
void | RemoveAllInputs () |
Remove all the input data. More... | |
vtkDataObject * | GetOutputDataObject (int port) |
Get the data object that will contain the algorithm output for the given port. More... | |
vtkDataObject * | GetInputDataObject (int port, int connection) |
Get the data object that will contain the algorithm input for the given port and given connection. More... | |
virtual void | RemoveInputConnection (int port, vtkAlgorithmOutput *input) |
Remove a connection from the given input port index. More... | |
virtual void | RemoveInputConnection (int port, int idx) |
Remove a connection given by index idx. More... | |
virtual void | RemoveAllInputConnections (int port) |
Removes all input connections. More... | |
virtual void | SetInputDataObject (int port, vtkDataObject *data) |
Sets the data-object as an input on the given port index. More... | |
virtual void | SetInputDataObject (vtkDataObject *data) |
virtual void | AddInputDataObject (int port, vtkDataObject *data) |
Add the data-object as an input to this given port. More... | |
virtual void | AddInputDataObject (vtkDataObject *data) |
vtkAlgorithmOutput * | GetOutputPort (int index) |
Get a proxy object corresponding to the given output port of this algorithm. More... | |
vtkAlgorithmOutput * | GetOutputPort () |
int | GetNumberOfInputConnections (int port) |
Get the number of inputs currently connected to a port. More... | |
int | GetTotalNumberOfInputConnections () |
Get the total number of inputs for this algorithm. More... | |
vtkAlgorithmOutput * | GetInputConnection (int port, int index) |
Get the algorithm output port connected to an input port. More... | |
vtkAlgorithm * | GetInputAlgorithm (int port, int index, int &algPort) |
Returns the algorithm and the output port index of that algorithm connected to a port-index pair. More... | |
vtkAlgorithm * | GetInputAlgorithm (int port, int index) |
Returns the algorithm connected to a port-index pair. More... | |
vtkAlgorithm * | GetInputAlgorithm () |
Equivalent to GetInputAlgorithm(0, 0). More... | |
vtkExecutive * | GetInputExecutive (int port, int index) |
Returns the executive associated with a particular input connection. More... | |
vtkExecutive * | GetInputExecutive () |
Equivalent to GetInputExecutive(0, 0) More... | |
vtkInformation * | GetInputInformation (int port, int index) |
Return the information object that is associated with a particular input connection. More... | |
vtkInformation * | GetInputInformation () |
Equivalent to GetInputInformation(0, 0) More... | |
vtkInformation * | GetOutputInformation (int port) |
Return the information object that is associated with a particular output port. More... | |
virtual int | Update (int port, vtkInformationVector *requests) |
This method enables the passing of data requests to the algorithm to be used during execution (in addition to bringing a particular port up-to-date). More... | |
virtual int | Update (vtkInformation *requests) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual int | UpdatePiece (int piece, int numPieces, int ghostLevels, const int extents[6]=0) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual int | UpdateExtent (const int extents[6]) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual int | UpdateTimeStep (double time, int piece=-1, int numPieces=1, int ghostLevels=0, const int extents[6]=0) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual void | UpdateInformation () |
Bring the algorithm's information up-to-date. More... | |
virtual void | UpdateDataObject () |
Create output object(s). More... | |
virtual void | PropagateUpdateExtent () |
Propagate meta-data upstream. More... | |
virtual void | UpdateWholeExtent () |
Bring this algorithm's outputs up-to-date. More... | |
void | ConvertTotalInputToPortConnection (int ind, int &port, int &conn) |
Convenience routine to convert from a linear ordering of input connections to a port/connection pair. More... | |
int | SetUpdateExtentToWholeExtent (int port) |
If the whole output extent is required, this method can be called to set the output update extent to the whole extent. More... | |
int | SetUpdateExtentToWholeExtent () |
Convenience function equivalent to SetUpdateExtentToWholeExtent(0) This method assumes that the whole extent is known (that UpdateInformation has been called). More... | |
void | SetUpdateExtent (int port, int piece, int numPieces, int ghostLevel) |
Set the output update extent in terms of piece and ghost levels. More... | |
void | SetUpdateExtent (int piece, int numPieces, int ghostLevel) |
Convenience function equivalent to SetUpdateExtent(0, piece, numPieces, ghostLevel) More... | |
void | SetUpdateExtent (int port, int extent[6]) |
Set the output update extent for data objects that use 3D extents. More... | |
void | SetUpdateExtent (int extent[6]) |
Convenience function equivalent to SetUpdateExtent(0, extent) More... | |
virtual vtkInformation * | GetInformation () |
Set/Get the information object associated with this algorithm. More... | |
virtual void | SetInformation (vtkInformation *) |
Set/Get the information object associated with this algorithm. More... | |
void | Register (vtkObjectBase *o) override |
Participate in garbage collection. More... | |
void | UnRegister (vtkObjectBase *o) override |
Participate in garbage collection. More... | |
virtual void | SetAbortExecute (int) |
Set/Get the AbortExecute flag for the process object. More... | |
virtual int | GetAbortExecute () |
Set/Get the AbortExecute flag for the process object. More... | |
virtual void | AbortExecuteOn () |
Set/Get the AbortExecute flag for the process object. More... | |
virtual void | AbortExecuteOff () |
Set/Get the AbortExecute flag for the process object. More... | |
virtual void | SetProgress (double) |
Set/Get the execution progress of a process object. More... | |
virtual double | GetProgress () |
Set/Get the execution progress of a process object. More... | |
void | SetProgressText (const char *ptext) |
Set the current text message associated with the progress state. More... | |
virtual char * | GetProgressText () |
Set the current text message associated with the progress state. More... | |
virtual unsigned long | GetErrorCode () |
The error code contains a possible error that occurred while reading or writing the file. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, const char *name) |
Set the input data arrays that this algorithm will process. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType) |
Set the input data arrays that this algorithm will process. More... | |
virtual void | SetInputArrayToProcess (int idx, vtkInformation *info) |
Set the input data arrays that this algorithm will process. More... | |
virtual void | SetInputConnection (int port, vtkAlgorithmOutput *input) |
Set the connection for the given input port index. More... | |
virtual void | SetInputConnection (vtkAlgorithmOutput *input) |
Set the connection for the given input port index. More... | |
virtual void | AddInputConnection (int port, vtkAlgorithmOutput *input) |
Add a connection to the given input port index. More... | |
virtual void | AddInputConnection (vtkAlgorithmOutput *input) |
Add a connection to the given input port index. More... | |
virtual void | Update (int port) |
Bring this algorithm's outputs up-to-date. More... | |
virtual void | Update () |
Bring this algorithm's outputs up-to-date. More... | |
virtual void | SetReleaseDataFlag (int) |
Turn release data flag on or off for all output ports. More... | |
virtual int | GetReleaseDataFlag () |
Turn release data flag on or off for all output ports. More... | |
void | ReleaseDataFlagOn () |
Turn release data flag on or off for all output ports. More... | |
void | ReleaseDataFlagOff () |
Turn release data flag on or off for all output ports. More... | |
int | UpdateExtentIsEmpty (vtkInformation *pinfo, vtkDataObject *output) |
This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. More... | |
int | UpdateExtentIsEmpty (vtkInformation *pinfo, int extentType) |
This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. More... | |
int * | GetUpdateExtent () |
These functions return the update extent for output ports that use 3D extents. More... | |
int * | GetUpdateExtent (int port) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int &x0, int &x1, int &y0, int &y1, int &z0, int &z1) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int port, int &x0, int &x1, int &y0, int &y1, int &z0, int &z1) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int extent[6]) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int port, int extent[6]) |
These functions return the update extent for output ports that use 3D extents. More... | |
int | GetUpdatePiece () |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdatePiece (int port) |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateNumberOfPieces () |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateNumberOfPieces (int port) |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateGhostLevel () |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateGhostLevel (int port) |
These functions return the update extent for output ports that use piece extents. More... | |
void | SetProgressObserver (vtkProgressObserver *) |
If an ProgressObserver is set, the algorithm will report progress through it rather than directly. More... | |
virtual vtkProgressObserver * | GetProgressObserver () |
If an ProgressObserver is set, the algorithm will report progress through it rather than directly. More... | |
![]() | |
vtkBaseTypeMacro (vtkObject, vtkObjectBase) | |
virtual void | DebugOn () |
Turn debugging output on. More... | |
virtual void | DebugOff () |
Turn debugging output off. More... | |
bool | GetDebug () |
Get the value of the debug flag. More... | |
void | SetDebug (bool debugFlag) |
Set the value of the debug flag. More... | |
virtual void | Modified () |
Update the modification time for this object. More... | |
virtual vtkMTimeType | GetMTime () |
Return this object's modified time. More... | |
void | RemoveObserver (unsigned long tag) |
void | RemoveObservers (unsigned long event) |
void | RemoveObservers (const char *event) |
void | RemoveAllObservers () |
int | HasObserver (unsigned long event) |
int | HasObserver (const char *event) |
int | InvokeEvent (unsigned long event) |
int | InvokeEvent (const char *event) |
unsigned long | AddObserver (unsigned long event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
unsigned long | AddObserver (const char *event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkCommand * | GetCommand (unsigned long tag) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObserver (vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
int | HasObserver (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
int | HasObserver (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Allow user to set the AbortFlagOn() with the return value of the callback method. More... | |
int | InvokeEvent (unsigned long event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
int | InvokeEvent (const char *event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
![]() | |
const char * | GetClassName () const |
Return the class name as a string. More... | |
virtual void | Delete () |
Delete a VTK object. More... | |
virtual void | FastDelete () |
Delete a reference to this object. More... | |
void | InitializeObjectBase () |
void | Print (ostream &os) |
Print an object to an ostream. More... | |
int | GetReferenceCount () |
Return the current reference count of this object. More... | |
void | SetReferenceCount (int) |
Sets the reference count. More... | |
void | PrintRevisions (ostream &) |
Legacy. More... | |
virtual void | PrintHeader (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
virtual void | PrintTrailer (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
Static Public Member Functions | |
static vtkMaskPoints * | New () |
static int | IsTypeOf (const char *type) |
static vtkMaskPoints * | SafeDownCast (vtkObjectBase *o) |
![]() | |
static vtkPolyDataAlgorithm * | New () |
static int | IsTypeOf (const char *type) |
static vtkPolyDataAlgorithm * | SafeDownCast (vtkObjectBase *o) |
![]() | |
static vtkAlgorithm * | New () |
static int | IsTypeOf (const char *type) |
static vtkAlgorithm * | SafeDownCast (vtkObjectBase *o) |
static vtkInformationIntegerKey * | INPUT_IS_OPTIONAL () |
Keys used to specify input port requirements. More... | |
static vtkInformationIntegerKey * | INPUT_IS_REPEATABLE () |
static vtkInformationInformationVectorKey * | INPUT_REQUIRED_FIELDS () |
static vtkInformationStringVectorKey * | INPUT_REQUIRED_DATA_TYPE () |
static vtkInformationInformationVectorKey * | INPUT_ARRAYS_TO_PROCESS () |
static vtkInformationIntegerKey * | INPUT_PORT () |
static vtkInformationIntegerKey * | INPUT_CONNECTION () |
static vtkInformationIntegerKey * | CAN_PRODUCE_SUB_EXTENT () |
This key tells the executive that a particular output port is capable of producing an arbitrary subextent of the whole extent. More... | |
static vtkInformationIntegerKey * | CAN_HANDLE_PIECE_REQUEST () |
Key that tells the pipeline that a particular algorithm can or cannot handle piece request. More... | |
static void | SetDefaultExecutivePrototype (vtkExecutive *proto) |
If the DefaultExecutivePrototype is set, a copy of it is created in CreateDefaultExecutive() using NewInstance(). More... | |
![]() | |
static vtkObject * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
static void | BreakOnError () |
This method is called when vtkErrorMacro executes. More... | |
static void | SetGlobalWarningDisplay (int val) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOn () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOff () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static int | GetGlobalWarningDisplay () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
![]() | |
static vtkTypeBool | IsTypeOf (const char *name) |
Return 1 if this class type is the same type of (or a subclass of) the named class. More... | |
static vtkObjectBase * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
Protected Member Functions | |
virtual vtkObjectBase * | NewInstanceInternal () const |
vtkMaskPoints () | |
~vtkMaskPoints () override | |
int | RequestData (vtkInformation *, vtkInformationVector **, vtkInformationVector *) override |
This is called by the superclass. More... | |
int | FillInputPortInformation (int port, vtkInformation *info) override |
Fill the input port information objects for this algorithm. More... | |
virtual void | InternalScatter (unsigned long *, unsigned long *, int, int) |
virtual void | InternalGather (unsigned long *, unsigned long *, int, int) |
virtual int | InternalGetNumberOfProcesses () |
virtual int | InternalGetLocalProcessId () |
virtual void | InternalBarrier () |
unsigned long | GetLocalSampleSize (vtkIdType, int) |
![]() | |
vtkPolyDataAlgorithm () | |
~vtkPolyDataAlgorithm () override | |
virtual int | RequestInformation (vtkInformation *request, vtkInformationVector **inputVector, vtkInformationVector *outputVector) |
virtual int | RequestUpdateExtent (vtkInformation *, vtkInformationVector **, vtkInformationVector *) |
This is called by the superclass. More... | |
int | FillOutputPortInformation (int port, vtkInformation *info) override |
Fill the output port information objects for this algorithm. More... | |
![]() | |
vtkAlgorithm () | |
~vtkAlgorithm () override | |
virtual void | SetNumberOfInputPorts (int n) |
Set the number of input ports used by the algorithm. More... | |
virtual void | SetNumberOfOutputPorts (int n) |
Set the number of output ports provided by the algorithm. More... | |
int | InputPortIndexInRange (int index, const char *action) |
int | OutputPortIndexInRange (int index, const char *action) |
int | GetInputArrayAssociation (int idx, vtkInformationVector **inputVector) |
Get the assocition of the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkInformation * | GetInputArrayFieldInformation (int idx, vtkInformationVector **inputVector) |
This method takes in an index (as specified in SetInputArrayToProcess) and a pipeline information vector. More... | |
virtual vtkExecutive * | CreateDefaultExecutive () |
Create a default executive. More... | |
void | ReportReferences (vtkGarbageCollector *) override |
virtual void | SetNthInputConnection (int port, int index, vtkAlgorithmOutput *input) |
Replace the Nth connection on the given input port. More... | |
virtual void | SetNumberOfInputConnections (int port, int n) |
Set the number of input connections on the given input port. More... | |
void | SetInputDataInternal (int port, vtkDataObject *input) |
These methods are used by subclasses to implement methods to set data objects directly as input. More... | |
void | AddInputDataInternal (int port, vtkDataObject *input) |
int | GetInputArrayAssociation (int idx, int connection, vtkInformationVector **inputVector) |
Filters that have multiple connections on one port can use this signature. More... | |
int | GetInputArrayAssociation (int idx, vtkDataObject *input) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkInformationVector **inputVector) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkInformationVector **inputVector, int &association) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkDataObject *input) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkDataObject *input, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector, int &association) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkDataObject *input) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkDataObject *input, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
virtual void | SetErrorCode (unsigned long) |
The error code contains a possible error that occurred while reading or writing the file. More... | |
![]() | |
vtkObject () | |
~vtkObject () override | |
void | RegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=NULL) |
These methods allow a command to exclusively grab all events. More... | |
void | InternalReleaseFocus () |
These methods allow a command to exclusively grab all events. More... | |
![]() | |
vtkObjectBase () | |
virtual | ~vtkObjectBase () |
virtual void | CollectRevisions (ostream &) |
vtkObjectBase (const vtkObjectBase &) | |
void | operator= (const vtkObjectBase &) |
Protected Attributes | |
int | OnRatio |
vtkIdType | Offset |
int | RandomMode |
vtkIdType | MaximumNumberOfPoints |
int | GenerateVertices |
int | SingleVertexPerCell |
int | RandomModeType |
int | ProportionalMaximumNumberOfPoints |
int | OutputPointsPrecision |
![]() | |
vtkInformation * | Information |
double | Progress |
char * | ProgressText |
vtkProgressObserver * | ProgressObserver |
unsigned long | ErrorCode |
The error code contains a possible error that occurred while reading or writing the file. More... | |
![]() | |
bool | Debug |
vtkTimeStamp | MTime |
vtkSubjectHelper * | SubjectHelper |
![]() | |
vtkAtomicInt32 | ReferenceCount |
vtkWeakPointerBase ** | WeakPointers |
Additional Inherited Members | |
![]() | |
int | AbortExecute |
![]() | |
static vtkInformationIntegerKey * | PORT_REQUIREMENTS_FILLED () |
![]() | |
static vtkExecutive * | DefaultExecutivePrototype |
selectively filter points
vtkMaskPoints is a filter that passes through points and point attributes from input dataset. (Other geometry is not passed through.) It is possible to mask every nth point, and to specify an initial offset to begin masking from. It is possible to also generate different random selections (jittered strides, real random samples, and spatially stratified random samples) from the input data. The filter can also generate vertices (topological primitives) as well as points. This is useful because vertices are rendered while points are not.
Definition at line 43 of file vtkMaskPoints.h.
Definition at line 47 of file vtkMaskPoints.h.
|
protected |
|
inlineoverrideprotected |
Definition at line 163 of file vtkMaskPoints.h.
|
static |
|
static |
|
virtual |
Return 1 if this class is the same type of (or a subclass of) the named class.
Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.
Reimplemented from vtkPolyDataAlgorithm.
Reimplemented in vtkPMaskPoints.
|
static |
|
protectedvirtual |
Reimplemented from vtkPolyDataAlgorithm.
Reimplemented in vtkPMaskPoints.
vtkMaskPoints* vtkMaskPoints::NewInstance | ( | ) | const |
|
overridevirtual |
Methods invoked by print to print information about the object including superclasses.
Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from vtkPolyDataAlgorithm.
Reimplemented in vtkPMaskPoints.
|
virtual |
Turn on every nth point (strided sampling), ignored by random modes.
|
virtual |
Turn on every nth point (strided sampling), ignored by random modes.
|
virtual |
Limit the number of points that can be passed through (i.e., sets the output sample size).
|
virtual |
Limit the number of points that can be passed through (i.e., sets the output sample size).
|
virtual |
Start sampling with this point.
Ignored by certain random modes.
|
virtual |
Start sampling with this point.
Ignored by certain random modes.
|
virtual |
Special flag causes randomization of point selection.
|
virtual |
Special flag causes randomization of point selection.
|
virtual |
Special flag causes randomization of point selection.
|
virtual |
Special flag causes randomization of point selection.
|
virtual |
Special mode selector that switches between random mode types.
0 - randomized strides: randomly strides through the data (default); fairly certain that this is not a statistically random sample because the output depends on the order of the input and the input points do not have an equal chance to appear in the output (plus Vitter's incremental random algorithms are more complex than this, while not a proof it is good indication this isn't a statistically random sample - the closest would be algorithm S) 1 - random sample: create a statistically random sample using Vitter's incremental algorithm D without A described in Vitter "Faster Mthods for Random Sampling", Communications of the ACM Volume 27, Issue 7, 1984 (OnRatio and Offset are ignored) O(sample size) 2 - spatially stratified random sample: create a spatially stratified random sample using the first method described in Woodring et al. "In-situ Sampling of a Large-Scale Particle Simulation for Interactive Visualization and Analysis", Computer Graphics Forum, 2011 (EuroVis 2011). (OnRatio and Offset are ignored) O(N log N)
|
virtual |
Special mode selector that switches between random mode types.
0 - randomized strides: randomly strides through the data (default); fairly certain that this is not a statistically random sample because the output depends on the order of the input and the input points do not have an equal chance to appear in the output (plus Vitter's incremental random algorithms are more complex than this, while not a proof it is good indication this isn't a statistically random sample - the closest would be algorithm S) 1 - random sample: create a statistically random sample using Vitter's incremental algorithm D without A described in Vitter "Faster Mthods for Random Sampling", Communications of the ACM Volume 27, Issue 7, 1984 (OnRatio and Offset are ignored) O(sample size) 2 - spatially stratified random sample: create a spatially stratified random sample using the first method described in Woodring et al. "In-situ Sampling of a Large-Scale Particle Simulation for Interactive Visualization and Analysis", Computer Graphics Forum, 2011 (EuroVis 2011). (OnRatio and Offset are ignored) O(N log N)
|
virtual |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL.
NOTHING WILL CHANGE IF THIS IS NOT THE PARALLEL vtkPMaskPoints. Determines whether maximum number of points is taken per processor (default) or if the maximum number of points is proportionally taken across processors (i.e., number of points per processor = points on a processor * maximum number of points / total points across all processors). In the first case, the total number of points = maximum number of points * number of processors. In the second case, the total number of points = maximum number of points.
|
virtual |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL.
NOTHING WILL CHANGE IF THIS IS NOT THE PARALLEL vtkPMaskPoints. Determines whether maximum number of points is taken per processor (default) or if the maximum number of points is proportionally taken across processors (i.e., number of points per processor = points on a processor * maximum number of points / total points across all processors). In the first case, the total number of points = maximum number of points * number of processors. In the second case, the total number of points = maximum number of points.
|
virtual |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL.
NOTHING WILL CHANGE IF THIS IS NOT THE PARALLEL vtkPMaskPoints. Determines whether maximum number of points is taken per processor (default) or if the maximum number of points is proportionally taken across processors (i.e., number of points per processor = points on a processor * maximum number of points / total points across all processors). In the first case, the total number of points = maximum number of points * number of processors. In the second case, the total number of points = maximum number of points.
|
virtual |
THIS ONLY WORKS WITH THE PARALLEL IMPLEMENTATION vtkPMaskPoints RUNNING IN PARALLEL.
NOTHING WILL CHANGE IF THIS IS NOT THE PARALLEL vtkPMaskPoints. Determines whether maximum number of points is taken per processor (default) or if the maximum number of points is proportionally taken across processors (i.e., number of points per processor = points on a processor * maximum number of points / total points across all processors). In the first case, the total number of points = maximum number of points * number of processors. In the second case, the total number of points = maximum number of points.
|
virtual |
Generate output polydata vertices as well as points.
A useful convenience method because vertices are drawn (they are topology) while points are not (they are geometry). By default this method is off.
|
virtual |
Generate output polydata vertices as well as points.
A useful convenience method because vertices are drawn (they are topology) while points are not (they are geometry). By default this method is off.
|
virtual |
Generate output polydata vertices as well as points.
A useful convenience method because vertices are drawn (they are topology) while points are not (they are geometry). By default this method is off.
|
virtual |
Generate output polydata vertices as well as points.
A useful convenience method because vertices are drawn (they are topology) while points are not (they are geometry). By default this method is off.
|
virtual |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag.
|
virtual |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag.
|
virtual |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag.
|
virtual |
When vertex generation is enabled, by default vertices are produced as multi-vertex cells (more than one per cell), if you wish to have a single vertex per cell, enable this flag.
|
virtual |
Set/get the desired precision for the output types.
See the documentation for the vtkAlgorithm::DesiredOutputPrecision enum for an explanation of the available precision settings.
|
virtual |
Set/get the desired precision for the output types.
See the documentation for the vtkAlgorithm::DesiredOutputPrecision enum for an explanation of the available precision settings.
|
overrideprotectedvirtual |
This is called by the superclass.
This is the method you should override.
Reimplemented from vtkPolyDataAlgorithm.
|
overrideprotectedvirtual |
Fill the input port information objects for this algorithm.
This is invoked by the first call to GetInputPortInformation for each port so subclasses can specify what they can handle.
Reimplemented from vtkPolyDataAlgorithm.
|
inlineprotectedvirtual |
Reimplemented in vtkPMaskPoints.
Definition at line 179 of file vtkMaskPoints.h.
|
inlineprotectedvirtual |
Reimplemented in vtkPMaskPoints.
Definition at line 180 of file vtkMaskPoints.h.
|
inlineprotectedvirtual |
Reimplemented in vtkPMaskPoints.
Definition at line 181 of file vtkMaskPoints.h.
|
inlineprotectedvirtual |
Reimplemented in vtkPMaskPoints.
Definition at line 182 of file vtkMaskPoints.h.
|
inlineprotectedvirtual |
Reimplemented in vtkPMaskPoints.
Definition at line 183 of file vtkMaskPoints.h.
|
protected |
Definition at line 169 of file vtkMaskPoints.h.
|
protected |
Definition at line 170 of file vtkMaskPoints.h.
|
protected |
Definition at line 171 of file vtkMaskPoints.h.
|
protected |
Definition at line 172 of file vtkMaskPoints.h.
|
protected |
Definition at line 173 of file vtkMaskPoints.h.
|
protected |
Definition at line 174 of file vtkMaskPoints.h.
|
protected |
Definition at line 175 of file vtkMaskPoints.h.
|
protected |
Definition at line 176 of file vtkMaskPoints.h.
|
protected |
Definition at line 177 of file vtkMaskPoints.h.