Main Page   Class Hierarchy   Alphabetical List   Compound List   File List   Compound Members   File Members   Related Pages  

vtkHexahedron Class Reference

a cell that represents a 3D rectangular hexahedron. More...

#include <vtkHexahedron.h>

Inheritance diagram for vtkHexahedron:

Inheritance graph
[legend]
Collaboration diagram for vtkHexahedron:

Collaboration graph
[legend]
List of all members.

Public Methods

virtual const char * GetClassName ()
virtual int IsA (const char *type)
vtkCellMakeObject ()
int GetCellType ()
int GetCellDimension ()
int GetNumberOfEdges ()
int GetNumberOfFaces ()
vtkCellGetEdge (int edgeId)
vtkCellGetFace (int faceId)
int CellBoundary (int subId, float pcoords[3], vtkIdList *pts)
void Contour (float value, vtkScalars *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, int cellId, vtkCellData *outCd)
void Clip (float value, vtkScalars *cellScalars, vtkPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, int cellId, vtkCellData *outCd, int insideOut)
int EvaluatePosition (float x[3], float *closestPoint, int &subId, float pcoords[3], float &dist2, float *weights)
void EvaluateLocation (int &subId, float pcoords[3], float x[3], float *weights)
int IntersectWithLine (float p1[3], float p2[3], float tol, float &t, float x[3], float pcoords[3], int &subId)
int Triangulate (int index, vtkIdList *ptIds, vtkPoints *pts)
void Derivatives (int subId, float pcoords[3], float *values, int dim, float *derivs)
void JacobianInverse (float pcoords[3], double **inverse, float derivs[24])
int CellBoundary (int subId, float pcoords[3], vtkIdList &pts)
int Triangulate (int index, vtkIdList &ptIds, vtkPoints &pts)

Static Public Methods

vtkHexahedron * New ()
int IsTypeOf (const char *type)
vtkHexahedron * SafeDownCast (vtkObject *o)
int * GetFaceArray (int faceId)
void InterpolationFunctions (float pcoords[3], float weights[8])
void InterpolationDerivs (float pcoords[3], float derivs[24])

Protected Methods

 vtkHexahedron ()
 ~vtkHexahedron ()
 vtkHexahedron (const vtkHexahedron &)
void operator= (const vtkHexahedron &)

Protected Attributes

vtkLineLine
vtkQuadQuad

Detailed Description

a cell that represents a 3D rectangular hexahedron.

Date:
2000/12/10 20:08:10
Revision:
1.50

vtkHexahedron is a concrete implementation of vtkCell to represent a 3D rectangular hexahedron (e.g., "brick" topology).

Examples:
vtkHexahedron (examples)

Definition at line 60 of file vtkHexahedron.h.


Constructor & Destructor Documentation

vtkHexahedron::vtkHexahedron   [protected]
 

vtkHexahedron::~vtkHexahedron   [protected]
 

vtkHexahedron::vtkHexahedron const vtkHexahedron &    [inline, protected]
 

Definition at line 116 of file vtkHexahedron.h.


Member Function Documentation

vtkHexahedron* vtkHexahedron::New   [static]
 

Create an object with Debug turned off, modified time initialized to zero, and reference counting on.

Reimplemented from vtkObject.

virtual const char* vtkHexahedron::GetClassName   [virtual]
 

Return the class name as a string. This method is defined in all subclasses of vtkObject with the vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell.

int vtkHexahedron::IsTypeOf const char *    type [static]
 

Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell.

virtual int vtkHexahedron::IsA const char *    type [virtual]
 

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell.

vtkHexahedron* vtkHexahedron::SafeDownCast vtkObject   o [static]
 

Will cast the supplied object to vtkObject* is this is a safe operation (i.e., a safe downcast); otherwise NULL is returned. This method is defined in all subclasses of vtkObject with the vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell.

vtkCell* vtkHexahedron::MakeObject   [virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

int vtkHexahedron::GetCellType   [inline, virtual]
 

Return the type of cell.

Reimplemented from vtkCell.

Definition at line 68 of file vtkHexahedron.h.

int vtkHexahedron::GetCellDimension   [inline, virtual]
 

Return the topological dimensional of the cell (0,1,2, or 3).

Reimplemented from vtkCell.

Definition at line 69 of file vtkHexahedron.h.

int vtkHexahedron::GetNumberOfEdges   [inline, virtual]
 

Return the number of edges in the cell.

Reimplemented from vtkCell.

Definition at line 70 of file vtkHexahedron.h.

int vtkHexahedron::GetNumberOfFaces   [inline, virtual]
 

Return the number of faces in the cell.

Reimplemented from vtkCell.

Definition at line 71 of file vtkHexahedron.h.

vtkCell* vtkHexahedron::GetEdge int    edgeId [virtual]
 

Return the edge cell from the edgeId of the cell.

Reimplemented from vtkCell.

vtkCell* vtkHexahedron::GetFace int    faceId [virtual]
 

Return the face cell from the faceId of the cell.

Reimplemented from vtkCell.

int* vtkHexahedron::GetFaceArray int    faceId [static]
 

int vtkHexahedron::CellBoundary int    subId,
float    pcoords[3],
vtkIdList   pts
[virtual]
 

Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell.

Reimplemented from vtkCell.

void vtkHexahedron::Contour float    value,
vtkScalars   cellScalars,
vtkPointLocator   locator,
vtkCellArray   verts,
vtkCellArray   lines,
vtkCellArray   polys,
vtkPointData   inPd,
vtkPointData   outPd,
vtkCellData   inCd,
int    cellId,
vtkCellData   outCd
[virtual]
 

Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is NULL, then no interpolation is performed. Also, if the output cell data is non-NULL, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Reimplemented from vtkCell.

void vtkHexahedron::Clip float    value,
vtkScalars   cellScalars,
vtkPointLocator   locator,
vtkCellArray   tetras,
vtkPointData   inPd,
vtkPointData   outPd,
vtkCellData   inCd,
int    cellId,
vtkCellData   outCd,
int    insideOut
[virtual]
 

Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-NULL, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Reimplemented from vtkCell.

int vtkHexahedron::EvaluatePosition float    x[3],
float *    closestPoint,
int &    subId,
float    pcoords[3],
float &    dist2,
float *    weights
[virtual]
 

Given a point x[3] return inside(=1) or outside(=0) cell; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.

Reimplemented from vtkCell.

void vtkHexahedron::EvaluateLocation int &    subId,
float    pcoords[3],
float    x[3],
float *    weights
[virtual]
 

Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.)

Reimplemented from vtkCell.

int vtkHexahedron::IntersectWithLine float    p1[3],
float    p2[3],
float    tol,
float &    t,
float    x[3],
float    pcoords[3],
int &    subId
[virtual]
 

Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition and tolerance. The method returns non-zero value if intersection occurs.

Reimplemented from vtkCell.

int vtkHexahedron::Triangulate int    index,
vtkIdList   ptIds,
vtkPoints   pts
[virtual]
 

Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned.

Reimplemented from vtkCell.

void vtkHexahedron::Derivatives int    subId,
float    pcoords[3],
float *    values,
int    dim,
float *    derivs
[virtual]
 

Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).

Reimplemented from vtkCell.

void vtkHexahedron::InterpolationFunctions float    pcoords[3],
float    weights[8]
[static]
 

Hexahedron specific

void vtkHexahedron::InterpolationDerivs float    pcoords[3],
float    derivs[24]
[static]
 

void vtkHexahedron::JacobianInverse float    pcoords[3],
double **    inverse,
float    derivs[24]
 

Given parametric coordinates compute inverse Jacobian transformation matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation function derivatives.

int vtkHexahedron::CellBoundary int    subId,
float    pcoords[3],
vtkIdList   pts
[inline]
 

For legacy compatibility. Do not use.

Definition at line 107 of file vtkHexahedron.h.

int vtkHexahedron::Triangulate int    index,
vtkIdList   ptIds,
vtkPoints   pts
[inline]
 

Definition at line 109 of file vtkHexahedron.h.

void vtkHexahedron::operator= const vtkHexahedron &    [inline, protected]
 

Definition at line 117 of file vtkHexahedron.h.


Member Data Documentation

vtkLine* vtkHexahedron::Line [protected]
 

Definition at line 119 of file vtkHexahedron.h.

vtkQuad* vtkHexahedron::Quad [protected]
 

Definition at line 120 of file vtkHexahedron.h.


The documentation for this class was generated from the following file:
Generated on Wed Nov 21 12:48:12 2001 for VTK by doxygen1.2.11.1 written by Dimitri van Heesch, © 1997-2001