Main Page | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Class Members | File Members | Related Pages

vtkPixel Class Reference

#include <vtkPixel.h>

Inheritance diagram for vtkPixel:

Inheritance graph
[legend]
Collaboration diagram for vtkPixel:

Collaboration graph
[legend]
List of all members.

Detailed Description

a cell that represents an orthogonal quadrilateral

vtkPixel is a concrete implementation of vtkCell to represent a 2D orthogonal quadrilateral. Unlike vtkQuad, the corners are at right angles, and aligned along x-y-z coordinate axes leading to large increases in computational efficiency.

Examples:
vtkPixel (Examples)
Tests:
vtkPixel (Tests)

Definition at line 37 of file vtkPixel.h.
virtual double * GetParametricCoords ()
static void InterpolationFunctions (double pcoords[3], double weights[4])
static void InterpolationDerivs (double pcoords[3], double derivs[8])

Public Types

typedef vtkCell Superclass

Public Member Functions

virtual const char * GetClassName ()
virtual int IsA (const char *type)
int GetParametricCenter (double pcoords[3])
int IntersectWithLine (double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)
int Triangulate (int index, vtkIdList *ptIds, vtkPoints *pts)
void Derivatives (int subId, double pcoords[3], double *values, int dim, double *derivs)
void PrintSelf (ostream &os, vtkIndent indent)
int GetCellType ()
int GetCellDimension ()
int GetNumberOfEdges ()
int GetNumberOfFaces ()
vtkCellGetEdge (int edgeId)
vtkCellGetFace (int)
int CellBoundary (int subId, double pcoords[3], vtkIdList *pts)
void Contour (double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)
void Clip (double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut)
int EvaluatePosition (double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights)
void EvaluateLocation (int &subId, double pcoords[3], double x[3], double *weights)

Static Public Member Functions

static vtkPixelNew ()
static int IsTypeOf (const char *type)
static vtkPixelSafeDownCast (vtkObject *o)

Protected Member Functions

 vtkPixel ()
 ~vtkPixel ()

Protected Attributes

vtkLineLine


Member Typedef Documentation

typedef vtkCell vtkPixel::Superclass
 

Reimplemented from vtkCell.

Definition at line 41 of file vtkPixel.h.


Constructor & Destructor Documentation

vtkPixel::vtkPixel  )  [protected]
 

vtkPixel::~vtkPixel  )  [protected]
 


Member Function Documentation

static vtkPixel* vtkPixel::New  )  [static]
 

Create an object with Debug turned off, modified time initialized to zero, and reference counting on.

Reimplemented from vtkObject.

virtual const char* vtkPixel::GetClassName  )  [virtual]
 

Reimplemented from vtkCell.

static int vtkPixel::IsTypeOf const char *  type  )  [static]
 

Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeRevisionMacro found in vtkSetGet.h.

Reimplemented from vtkCell.

virtual int vtkPixel::IsA const char *  type  )  [virtual]
 

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeRevisionMacro found in vtkSetGet.h.

Reimplemented from vtkCell.

static vtkPixel* vtkPixel::SafeDownCast vtkObject o  )  [static]
 

Reimplemented from vtkCell.

void vtkPixel::PrintSelf ostream &  os,
vtkIndent  indent
[virtual]
 

Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkCell.

int vtkPixel::GetCellType  )  [inline, virtual]
 

See the vtkCell API for descriptions of these methods.

Implements vtkCell.

Definition at line 46 of file vtkPixel.h.

References VTK_PIXEL.

int vtkPixel::GetCellDimension  )  [inline, virtual]
 

Return the topological dimensional of the cell (0,1,2, or 3).

Implements vtkCell.

Definition at line 47 of file vtkPixel.h.

int vtkPixel::GetNumberOfEdges  )  [inline, virtual]
 

Return the number of edges in the cell.

Implements vtkCell.

Definition at line 48 of file vtkPixel.h.

int vtkPixel::GetNumberOfFaces  )  [inline, virtual]
 

Return the number of faces in the cell.

Implements vtkCell.

Definition at line 49 of file vtkPixel.h.

vtkCell* vtkPixel::GetEdge int  edgeId  )  [virtual]
 

Return the edge cell from the edgeId of the cell.

Implements vtkCell.

vtkCell* vtkPixel::GetFace int   )  [inline, virtual]
 

Return the face cell from the faceId of the cell.

Implements vtkCell.

Definition at line 51 of file vtkPixel.h.

int vtkPixel::CellBoundary int  subId,
double  pcoords[3],
vtkIdList pts
[virtual]
 

Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell.

Implements vtkCell.

void vtkPixel::Contour double  value,
vtkDataArray cellScalars,
vtkPointLocator locator,
vtkCellArray verts,
vtkCellArray lines,
vtkCellArray polys,
vtkPointData inPd,
vtkPointData outPd,
vtkCellData inCd,
vtkIdType  cellId,
vtkCellData outCd
[virtual]
 

Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is NULL, then no interpolation is performed. Also, if the output cell data is non-NULL, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Implements vtkCell.

void vtkPixel::Clip double  value,
vtkDataArray cellScalars,
vtkPointLocator locator,
vtkCellArray polys,
vtkPointData inPd,
vtkPointData outPd,
vtkCellData inCd,
vtkIdType  cellId,
vtkCellData outCd,
int  insideOut
[virtual]
 

Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-NULL, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Implements vtkCell.

int vtkPixel::EvaluatePosition double  x[3],
double *  closestPoint,
int &  subId,
double  pcoords[3],
double &  dist2,
double *  weights
[virtual]
 

Given a point x[3] return inside(=1) or outside(=0) cell; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.

Implements vtkCell.

void vtkPixel::EvaluateLocation int &  subId,
double  pcoords[3],
double  x[3],
double *  weights
[virtual]
 

Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.)

Implements vtkCell.

int vtkPixel::GetParametricCenter double  pcoords[3]  )  [inline, virtual]
 

Return the center of the triangle in parametric coordinates.

Reimplemented from vtkCell.

Definition at line 99 of file vtkPixel.h.

int vtkPixel::IntersectWithLine double  p1[3],
double  p2[3],
double  tol,
double &  t,
double  x[3],
double  pcoords[3],
int &  subId
[virtual]
 

Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition and tolerance. The method returns non-zero value if intersection occurs.

Implements vtkCell.

int vtkPixel::Triangulate int  index,
vtkIdList ptIds,
vtkPoints pts
[virtual]
 

Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell.

Implements vtkCell.

void vtkPixel::Derivatives int  subId,
double  pcoords[3],
double *  values,
int  dim,
double *  derivs
[virtual]
 

Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).

Implements vtkCell.

virtual double* vtkPixel::GetParametricCoords  )  [virtual]
 

Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-NULL pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell.

Reimplemented from vtkCell.

static void vtkPixel::InterpolationFunctions double  pcoords[3],
double  weights[4]
[static]
 

Pixel specific methods.

static void vtkPixel::InterpolationDerivs double  pcoords[3],
double  derivs[8]
[static]
 


Member Data Documentation

vtkLine* vtkPixel::Line [protected]
 

Definition at line 91 of file vtkPixel.h.


The documentation for this class was generated from the following file:
Generated on Tue Jan 22 00:07:21 2008 for VTK by  doxygen 1.4.3-20050530