#include <vtkKdNode.h>
Definition at line 43 of file vtkKdNode.h.
Public Types | |
typedef vtkObject | Superclass |
Public Member Functions | |
virtual const char * | GetClassName () |
virtual int | IsA (const char *type) |
void | PrintSelf (ostream &os, vtkIndent indent) |
virtual double | GetDivisionPosition () |
void | SetDataBounds (float *v) |
void | SetMinBounds (double *mb) |
void | SetMaxBounds (double *mb) |
void | SetMinDataBounds (double *mb) |
void | SetMaxDataBounds (double *mb) |
void | AddChildNodes (vtkKdNode *left, vtkKdNode *right) |
void | DeleteChildNodes () |
int | IntersectsRegion (vtkPlanesIntersection *pi, int useDataBounds) |
int | ContainsPoint (double x, double y, double z, int useDataBounds) |
double | GetDistance2ToBoundary (double x, double y, double z, int useDataBounds) |
double | GetDistance2ToInnerBoundary (double x, double y, double z) |
virtual void | SetDim (int) |
virtual int | GetDim () |
virtual void | SetNumberOfPoints (int) |
virtual int | GetNumberOfPoints () |
void | SetBounds (double x1, double x2, double y1, double y2, double z1, double z2) |
void | SetBounds (double b[6]) |
void | GetBounds (double *b) const |
void | SetDataBounds (double x1, double x2, double y1, double y2, double z1, double z2) |
void | GetDataBounds (double *b) const |
double * | GetMinBounds () |
double * | GetMaxBounds () |
double * | GetMinDataBounds () |
double * | GetMaxDataBounds () |
virtual void | SetID (int) |
virtual int | GetID () |
virtual int | GetMinID () |
virtual int | GetMaxID () |
virtual void | SetMinID (int) |
virtual void | SetMaxID (int) |
virtual vtkKdNode * | GetLeft () |
void | SetLeft (vtkKdNode *left) |
virtual vtkKdNode * | GetRight () |
void | SetRight (vtkKdNode *right) |
virtual vtkKdNode * | GetUp () |
void | SetUp (vtkKdNode *up) |
int | IntersectsBox (double x1, double x2, double y1, double y2, double z1, double z2, int useDataBounds) |
int | IntersectsSphere2 (double x, double y, double z, double rSquared, int useDataBounds) |
int | IntersectsCell (vtkCell *cell, int useDataBounds, int cellRegion=-1, double *cellBounds=NULL) |
int | ContainsBox (double x1, double x2, double y1, double y2, double z1, double z2, int useDataBounds) |
double | GetDistance2ToBoundary (double x, double y, double z, double *boundaryPt, int useDataBounds) |
void | PrintNode (int depth) |
void | PrintVerboseNode (int depth) |
Static Public Member Functions | |
static int | IsTypeOf (const char *type) |
static vtkKdNode * | SafeDownCast (vtkObject *o) |
static vtkKdNode * | New () |
Protected Member Functions | |
vtkKdNode () | |
~vtkKdNode () |
typedef vtkObject vtkKdNode::Superclass |
vtkKdNode::vtkKdNode | ( | ) | [protected] |
vtkKdNode::~vtkKdNode | ( | ) | [protected] |
virtual const char* vtkKdNode::GetClassName | ( | ) | [virtual] |
Reimplemented from vtkObject.
static int vtkKdNode::IsTypeOf | ( | const char * | name | ) | [static] |
Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.
Reimplemented from vtkObject.
virtual int vtkKdNode::IsA | ( | const char * | name | ) | [virtual] |
Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.
Reimplemented from vtkObject.
void vtkKdNode::PrintSelf | ( | ostream & | os, | |
vtkIndent | indent | |||
) | [virtual] |
static vtkKdNode* vtkKdNode::New | ( | ) | [static] |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
Reimplemented from vtkObject.
virtual void vtkKdNode::SetDim | ( | int | ) | [virtual] |
Set/Get the dimension along which this region is divided. (0 - x, 1 - y, 2 - z, 3 - leaf node (default)).
virtual int vtkKdNode::GetDim | ( | ) | [virtual] |
Set/Get the dimension along which this region is divided. (0 - x, 1 - y, 2 - z, 3 - leaf node (default)).
virtual double vtkKdNode::GetDivisionPosition | ( | ) | [virtual] |
Get the location of the division plane along the axis the region is divided. See also GetDim(). The result is undertermined if this node is not divided (a leaf node).
virtual void vtkKdNode::SetNumberOfPoints | ( | int | ) | [virtual] |
Set/Get the number of points contained in this region.
virtual int vtkKdNode::GetNumberOfPoints | ( | ) | [virtual] |
Set/Get the number of points contained in this region.
void vtkKdNode::SetBounds | ( | double | x1, | |
double | x2, | |||
double | y1, | |||
double | y2, | |||
double | z1, | |||
double | z2 | |||
) |
Set/Get the bounds of the spatial region represented by this node. Caller allocates storage for 6-vector in GetBounds.
void vtkKdNode::SetBounds | ( | double | b[6] | ) | [inline] |
Set/Get the bounds of the spatial region represented by this node. Caller allocates storage for 6-vector in GetBounds.
Definition at line 73 of file vtkKdNode.h.
void vtkKdNode::GetBounds | ( | double * | b | ) | const |
Set/Get the bounds of the spatial region represented by this node. Caller allocates storage for 6-vector in GetBounds.
void vtkKdNode::SetDataBounds | ( | double | x1, | |
double | x2, | |||
double | y1, | |||
double | y2, | |||
double | z1, | |||
double | z2 | |||
) |
Set/Get the bounds of the points contained in this spatial region. This may be smaller than the bounds of the region itself. Caller allocates storage for 6-vector in GetDataBounds.
void vtkKdNode::GetDataBounds | ( | double * | b | ) | const |
Set/Get the bounds of the points contained in this spatial region. This may be smaller than the bounds of the region itself. Caller allocates storage for 6-vector in GetDataBounds.
void vtkKdNode::SetDataBounds | ( | float * | v | ) |
Given a pointer to NumberOfPoints points, set the DataBounds of this node to the bounds of these points.
double* vtkKdNode::GetMinBounds | ( | ) | [inline] |
Get a pointer to the 3 bound minima (xmin, ymin and zmin) or the 3 bound maxima (xmax, ymax, zmax). Don't free this pointer.
Definition at line 95 of file vtkKdNode.h.
double* vtkKdNode::GetMaxBounds | ( | ) | [inline] |
Get a pointer to the 3 bound minima (xmin, ymin and zmin) or the 3 bound maxima (xmax, ymax, zmax). Don't free this pointer.
Definition at line 96 of file vtkKdNode.h.
void vtkKdNode::SetMinBounds | ( | double * | mb | ) |
Set the xmin, ymin and zmin value of the bounds of this region
void vtkKdNode::SetMaxBounds | ( | double * | mb | ) |
Set the xmax, ymax and zmax value of the bounds of this region
double* vtkKdNode::GetMinDataBounds | ( | ) | [inline] |
Get a pointer to the 3 data bound minima (xmin, ymin and zmin) or the 3 data bound maxima (xmax, ymax, zmax). Don't free this pointer.
Definition at line 108 of file vtkKdNode.h.
double* vtkKdNode::GetMaxDataBounds | ( | ) | [inline] |
Get a pointer to the 3 data bound minima (xmin, ymin and zmin) or the 3 data bound maxima (xmax, ymax, zmax). Don't free this pointer.
Definition at line 109 of file vtkKdNode.h.
void vtkKdNode::SetMinDataBounds | ( | double * | mb | ) |
Set the xmin, ymin and zmin value of the bounds of this data within this region
void vtkKdNode::SetMaxDataBounds | ( | double * | mb | ) |
Set the xmax, ymax and zmax value of the bounds of this data within this region
virtual void vtkKdNode::SetID | ( | int | ) | [virtual] |
Set/Get the ID associated with the region described by this node. If this is not a leaf node, this value should be -1.
virtual int vtkKdNode::GetID | ( | ) | [virtual] |
Set/Get the ID associated with the region described by this node. If this is not a leaf node, this value should be -1.
virtual int vtkKdNode::GetMinID | ( | ) | [virtual] |
If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID.
virtual int vtkKdNode::GetMaxID | ( | ) | [virtual] |
If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID.
virtual void vtkKdNode::SetMinID | ( | int | ) | [virtual] |
If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID.
virtual void vtkKdNode::SetMaxID | ( | int | ) | [virtual] |
If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID.
Add the left and right children.
void vtkKdNode::DeleteChildNodes | ( | ) |
Delete the left and right children.
virtual vtkKdNode* vtkKdNode::GetLeft | ( | ) | [virtual] |
Set/Get a pointer to the left child of this node.
void vtkKdNode::SetLeft | ( | vtkKdNode * | left | ) |
Set/Get a pointer to the left child of this node.
virtual vtkKdNode* vtkKdNode::GetRight | ( | ) | [virtual] |
Set/Get a pointer to the right child of this node.
void vtkKdNode::SetRight | ( | vtkKdNode * | right | ) |
Set/Get a pointer to the right child of this node.
virtual vtkKdNode* vtkKdNode::GetUp | ( | ) | [virtual] |
Set/Get a pointer to the parent of this node.
void vtkKdNode::SetUp | ( | vtkKdNode * | up | ) |
Set/Get a pointer to the parent of this node.
int vtkKdNode::IntersectsBox | ( | double | x1, | |
double | x2, | |||
double | y1, | |||
double | y2, | |||
double | z1, | |||
double | z2, | |||
int | useDataBounds | |||
) |
Return 1 if this spatial region intersects the axis-aligned box given by the bounds passed in. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero.
int vtkKdNode::IntersectsSphere2 | ( | double | x, | |
double | y, | |||
double | z, | |||
double | rSquared, | |||
int | useDataBounds | |||
) |
Return 1 if this spatial region intersects a sphere described by it's center and the square of it's radius. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero.
int vtkKdNode::IntersectsRegion | ( | vtkPlanesIntersection * | pi, | |
int | useDataBounds | |||
) |
A vtkPlanesIntersection object represents a convex 3D region bounded by planes, and it is capable of computing intersections of boxes with itself. Return 1 if this spatial region intersects the spatial region described by the vtkPlanesIntersection object. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero.
int vtkKdNode::IntersectsCell | ( | vtkCell * | cell, | |
int | useDataBounds, | |||
int | cellRegion = -1 , |
|||
double * | cellBounds = NULL | |||
) |
Return 1 if the cell specified intersects this region. If you already know the ID of the region containing the cell's centroid, provide that as an argument. If you already know the bounds of the cell, provide that as well, in the form of xmin,xmax,ymin,ymax,zmin, zmax. Either of these may speed the calculation. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero.
int vtkKdNode::ContainsBox | ( | double | x1, | |
double | x2, | |||
double | y1, | |||
double | y2, | |||
double | z1, | |||
double | z2, | |||
int | useDataBounds | |||
) |
Return 1 if this spatial region entirely contains a box specified by it's bounds. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero.
int vtkKdNode::ContainsPoint | ( | double | x, | |
double | y, | |||
double | z, | |||
int | useDataBounds | |||
) |
Return 1 if this spatial region entirely contains the given point. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero.
double vtkKdNode::GetDistance2ToBoundary | ( | double | x, | |
double | y, | |||
double | z, | |||
int | useDataBounds | |||
) |
Calculate the distance squared from any point to the boundary of this region. Use the boundary of the points within the region if useDataBounds is non-zero.
double vtkKdNode::GetDistance2ToBoundary | ( | double | x, | |
double | y, | |||
double | z, | |||
double * | boundaryPt, | |||
int | useDataBounds | |||
) |
Calculate the distance squared from any point to the boundary of this region. Use the boundary of the points within the region if useDataBounds is non-zero. Set boundaryPt to the point on the boundary.
double vtkKdNode::GetDistance2ToInnerBoundary | ( | double | x, | |
double | y, | |||
double | z | |||
) |
Calculate the distance from the specified point (which is required to be inside this spatial region) to an interior boundary. An interior boundary is one that is not also an boundary of the entire space partitioned by the tree of vtkKdNode's.
void vtkKdNode::PrintNode | ( | int | depth | ) |
For debugging purposes, print out this node.
void vtkKdNode::PrintVerboseNode | ( | int | depth | ) |
For debugging purposes, print out this node.