VTK
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes
vtkDescriptiveStatistics Class Reference

A class for univariate descriptive statistics. More...

#include <vtkDescriptiveStatistics.h>

Inheritance diagram for vtkDescriptiveStatistics:
Inheritance graph
[legend]
Collaboration diagram for vtkDescriptiveStatistics:
Collaboration graph
[legend]

List of all members.

Public Types

typedef vtkStatisticsAlgorithm Superclass

Public Member Functions

virtual int IsA (const char *type)
vtkDescriptiveStatisticsNewInstance () const
void PrintSelf (ostream &os, vtkIndent indent)
virtual void SetUnbiasedVariance (int)
virtual int GetUnbiasedVariance ()
virtual void UnbiasedVarianceOn ()
virtual void UnbiasedVarianceOff ()
virtual void SetG1Skewness (int)
virtual int GetG1Skewness ()
virtual void G1SkewnessOn ()
virtual void G1SkewnessOff ()
virtual void SetG2Kurtosis (int)
virtual int GetG2Kurtosis ()
virtual void G2KurtosisOn ()
virtual void G2KurtosisOff ()
virtual void SetSignedDeviations (int)
virtual int GetSignedDeviations ()
virtual void SignedDeviationsOn ()
virtual void SignedDeviationsOff ()
virtual void Aggregate (vtkDataObjectCollection *, vtkMultiBlockDataSet *)

Static Public Member Functions

static int IsTypeOf (const char *type)
static vtkDescriptiveStatisticsSafeDownCast (vtkObjectBase *o)
static vtkDescriptiveStatisticsNew ()

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 vtkDescriptiveStatistics ()
 ~vtkDescriptiveStatistics ()
virtual void Derive (vtkMultiBlockDataSet *)
virtual vtkDoubleArrayCalculatePValues (vtkDoubleArray *)
virtual void Learn (vtkTable *, vtkTable *, vtkMultiBlockDataSet *)
virtual void Test (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)
virtual void Assess (vtkTable *inData, vtkMultiBlockDataSet *inMeta, vtkTable *outData)
virtual void SelectAssessFunctor (vtkTable *outData, vtkDataObject *inMeta, vtkStringArray *rowNames, AssessFunctor *&dfunc)

Protected Attributes

int UnbiasedVariance
int G1Skewness
int G2Kurtosis
int SignedDeviations

Detailed Description

A class for univariate descriptive statistics.

Private implementation for bivariate statistics algorithms.

Given a selection of columns of interest in an input data table, this class provides the following functionalities, depending on the chosen execution options: Learn: calculate extremal values, sample mean, and M2, M3, and M4 aggregates (cf. P. Pebay, Formulas for robust, one-pass parallel computation of covariances and Arbitrary-Order Statistical Moments, Sandia Report SAND2008-6212, Sep 2008, http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details) Derive: calculate unbiased variance estimator, standard deviation estimator, two skewness estimators, and two kurtosis excess estimators. Assess: given an input data set, a reference value and a non-negative deviation, mark each datum with corresponding relative deviation (1-dimensional Mahlanobis distance). If the deviation is zero, then mark each datum which are equal to the reference value with 0, and all others with 1. By default, the reference value and the deviation are, respectively, the mean and the standard deviation of the input model. Test: calculate Jarque-Bera statistic and, if VTK to R interface is available, retrieve corresponding p-value for normality testing.

Thanks:
Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories for implementing this class. Updated by Philippe Pebay, Kitware SAS 2012
Examples:
vtkDescriptiveStatistics (Examples)
Tests:
vtkDescriptiveStatistics (Tests)

The main purpose of this class is to avoid exposure of STL container through the APIs of the vtkStatistics classes APIs

Thanks:
Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories for implementing this class.

Definition at line 66 of file vtkDescriptiveStatistics.h.


Member Typedef Documentation

Reimplemented from vtkStatisticsAlgorithm.

Reimplemented in vtkDescriptiveStatisticsGnuR, and vtkPDescriptiveStatistics.

Definition at line 69 of file vtkDescriptiveStatistics.h.


Constructor & Destructor Documentation


Member Function Documentation

static int vtkDescriptiveStatistics::IsTypeOf ( const char *  name) [static]

Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkStatisticsAlgorithm.

Reimplemented in vtkDescriptiveStatisticsGnuR, and vtkPDescriptiveStatistics.

virtual int vtkDescriptiveStatistics::IsA ( const char *  name) [virtual]

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkStatisticsAlgorithm.

Reimplemented in vtkDescriptiveStatisticsGnuR, and vtkPDescriptiveStatistics.

virtual vtkObjectBase* vtkDescriptiveStatistics::NewInstanceInternal ( ) const [protected, virtual]
void vtkDescriptiveStatistics::PrintSelf ( ostream &  os,
vtkIndent  indent 
) [virtual]

Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkStatisticsAlgorithm.

Reimplemented in vtkDescriptiveStatisticsGnuR, and vtkPDescriptiveStatistics.

Create an object with Debug turned off, modified time initialized to zero, and reference counting on.

Reimplemented from vtkTableAlgorithm.

Reimplemented in vtkDescriptiveStatisticsGnuR, and vtkPDescriptiveStatistics.

virtual void vtkDescriptiveStatistics::SetUnbiasedVariance ( int  ) [virtual]

Set/get whether the unbiased estimator for the variance should be used, or if the population variance will be calculated. The default is that the unbiased estimator will be used.

Set/get whether the unbiased estimator for the variance should be used, or if the population variance will be calculated. The default is that the unbiased estimator will be used.

Set/get whether the unbiased estimator for the variance should be used, or if the population variance will be calculated. The default is that the unbiased estimator will be used.

Set/get whether the unbiased estimator for the variance should be used, or if the population variance will be calculated. The default is that the unbiased estimator will be used.

virtual void vtkDescriptiveStatistics::SetG1Skewness ( int  ) [virtual]

Set/get whether the G1 estimator for the skewness should be used, or if the g1 skewness will be calculated. The default is that the g1 skewness estimator will be used.

Set/get whether the G1 estimator for the skewness should be used, or if the g1 skewness will be calculated. The default is that the g1 skewness estimator will be used.

virtual void vtkDescriptiveStatistics::G1SkewnessOn ( ) [virtual]

Set/get whether the G1 estimator for the skewness should be used, or if the g1 skewness will be calculated. The default is that the g1 skewness estimator will be used.

virtual void vtkDescriptiveStatistics::G1SkewnessOff ( ) [virtual]

Set/get whether the G1 estimator for the skewness should be used, or if the g1 skewness will be calculated. The default is that the g1 skewness estimator will be used.

virtual void vtkDescriptiveStatistics::SetG2Kurtosis ( int  ) [virtual]

Set/get whether the G2 estimator for the kurtosis should be used, or if the g2 kurtosis will be calculated. The default is that the g2 kurtosis estimator will be used.

Set/get whether the G2 estimator for the kurtosis should be used, or if the g2 kurtosis will be calculated. The default is that the g2 kurtosis estimator will be used.

virtual void vtkDescriptiveStatistics::G2KurtosisOn ( ) [virtual]

Set/get whether the G2 estimator for the kurtosis should be used, or if the g2 kurtosis will be calculated. The default is that the g2 kurtosis estimator will be used.

virtual void vtkDescriptiveStatistics::G2KurtosisOff ( ) [virtual]

Set/get whether the G2 estimator for the kurtosis should be used, or if the g2 kurtosis will be calculated. The default is that the g2 kurtosis estimator will be used.

virtual void vtkDescriptiveStatistics::SetSignedDeviations ( int  ) [virtual]

Set/get whether the deviations returned should be signed, or should only have their magnitude reported. The default is that signed deviations will be computed.

Set/get whether the deviations returned should be signed, or should only have their magnitude reported. The default is that signed deviations will be computed.

Set/get whether the deviations returned should be signed, or should only have their magnitude reported. The default is that signed deviations will be computed.

Set/get whether the deviations returned should be signed, or should only have their magnitude reported. The default is that signed deviations will be computed.

Given a collection of models, calculate aggregate model

Implements vtkStatisticsAlgorithm.

virtual void vtkDescriptiveStatistics::Learn ( vtkTable ,
vtkTable ,
vtkMultiBlockDataSet  
) [protected, virtual]

Execute the calculations required by the Learn option, given some input Data NB: input parameters are unused.

Implements vtkStatisticsAlgorithm.

Reimplemented in vtkPDescriptiveStatistics.

virtual void vtkDescriptiveStatistics::Derive ( vtkMultiBlockDataSet ) [protected, virtual]

Execute the calculations required by the Derive option.

Implements vtkStatisticsAlgorithm.

virtual void vtkDescriptiveStatistics::Test ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable  
) [protected, virtual]

Execute the calculations required by the Test option.

Implements vtkStatisticsAlgorithm.

virtual void vtkDescriptiveStatistics::Assess ( vtkTable inData,
vtkMultiBlockDataSet inMeta,
vtkTable outData 
) [inline, protected, virtual]

Execute the calculations required by the Assess option.

Implements vtkStatisticsAlgorithm.

Definition at line 139 of file vtkDescriptiveStatistics.h.

Calculate p-value. This will be overridden using the object factory with an R implementation if R is present.

Reimplemented in vtkDescriptiveStatisticsGnuR.

virtual void vtkDescriptiveStatistics::SelectAssessFunctor ( vtkTable outData,
vtkDataObject inMeta,
vtkStringArray rowNames,
AssessFunctor *&  dfunc 
) [protected, virtual]

Provide the appropriate assessment functor.

Implements vtkStatisticsAlgorithm.


Member Data Documentation

Definition at line 159 of file vtkDescriptiveStatistics.h.

Definition at line 160 of file vtkDescriptiveStatistics.h.

Definition at line 161 of file vtkDescriptiveStatistics.h.

Definition at line 162 of file vtkDescriptiveStatistics.h.


The documentation for this class was generated from the following file: