VTK
Classes | Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes
vtkStatisticsAlgorithm Class Reference

Base class for statistics algorithms. More...

#include <vtkStatisticsAlgorithm.h>

Inheritance diagram for vtkStatisticsAlgorithm:
Inheritance graph
[legend]
Collaboration diagram for vtkStatisticsAlgorithm:
Collaboration graph
[legend]

List of all members.

Classes

class  AssessFunctor

Public Types

typedef vtkTableAlgorithm Superclass
enum  InputPorts { INPUT_DATA = 0, LEARN_PARAMETERS = 1, INPUT_MODEL = 2 }
enum  OutputIndices { OUTPUT_DATA = 0, OUTPUT_MODEL = 1, ASSESSMENT = 2, OUTPUT_TEST = 2 }

Public Member Functions

virtual int IsA (const char *type)
vtkStatisticsAlgorithmNewInstance () const
void PrintSelf (ostream &os, vtkIndent indent)
virtual void SetColumnStatus (const char *namCol, int status)
virtual void ResetAllColumnStates ()
virtual int RequestSelectedColumns ()
virtual void ResetRequests ()
virtual vtkIdType GetNumberOfRequests ()
virtual vtkIdType GetNumberOfColumnsForRequest (vtkIdType request)
void AddColumn (const char *namCol)
void AddColumnPair (const char *namColX, const char *namColY)
virtual void SetLearnOptionParameterConnection (vtkAlgorithmOutput *params)
virtual void SetLearnOptionParameters (vtkDataObject *params)
virtual void SetInputModelConnection (vtkAlgorithmOutput *model)
virtual void SetInputModel (vtkDataObject *model)
virtual void SetLearnOption (bool)
virtual bool GetLearnOption ()
virtual void SetDeriveOption (bool)
virtual bool GetDeriveOption ()
virtual void SetAssessOption (bool)
virtual bool GetAssessOption ()
virtual void SetTestOption (bool)
virtual bool GetTestOption ()
virtual void SetNumberOfPrimaryTables (vtkIdType)
virtual vtkIdType GetNumberOfPrimaryTables ()
virtual void SetAssessNames (vtkStringArray *)
virtual vtkStringArrayGetAssessNames ()
virtual const char * GetColumnForRequest (vtkIdType r, vtkIdType c)
virtual int GetColumnForRequest (vtkIdType r, vtkIdType c, vtkStdString &columnName)
virtual bool SetParameter (const char *parameter, int index, vtkVariant value)
virtual void Aggregate (vtkDataObjectCollection *, vtkMultiBlockDataSet *)=0

Static Public Member Functions

static int IsTypeOf (const char *type)
static vtkStatisticsAlgorithmSafeDownCast (vtkObjectBase *o)

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 vtkStatisticsAlgorithm ()
 ~vtkStatisticsAlgorithm ()
virtual int FillInputPortInformation (int port, vtkInformation *info)
virtual int FillOutputPortInformation (int port, vtkInformation *info)
virtual int RequestData (vtkInformation *, vtkInformationVector **, vtkInformationVector *)
virtual void Derive (vtkMultiBlockDataSet *)=0
virtual void Learn (vtkTable *, vtkTable *, vtkMultiBlockDataSet *)=0
virtual void Assess (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)=0
void Assess (vtkTable *, vtkMultiBlockDataSet *, vtkTable *, int)
virtual void Test (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)=0
virtual void SelectAssessFunctor (vtkTable *outData, vtkDataObject *inMeta, vtkStringArray *rowNames, AssessFunctor *&dfunc)=0

Protected Attributes

int NumberOfPrimaryTables
bool LearnOption
bool DeriveOption
bool AssessOption
bool TestOption
vtkStringArrayAssessNames
vtkStatisticsAlgorithmPrivateInternals

Detailed Description

Base class for statistics algorithms.

All statistics algorithms can conceptually be operated with several operations: Learn: given an input data set, calculate a minimal statistical model (e.g., sums, raw moments, joint probabilities). Derive: given an input minimal statistical model, derive the full model (e.g., descriptive statistics, quantiles, correlations, conditional probabilities). NB: It may be, or not be, a problem that a full model was not derived. For instance, when doing parallel calculations, one only wants to derive the full model after all partial calculations have completed. On the other hand, one can also directly provide a full model, that was previously calculated or guessed, and not derive a new one. Assess: given an input data set, input statistics, and some form of threshold, assess a subset of the data set. Test: perform at least one statistical test. Therefore, a vtkStatisticsAlgorithm has the following ports 3 optional input ports: Data (vtkTable) Parameters to the learn operation (vtkTable) Input model (vtkMultiBlockDataSet) 3 output ports: Data (input annotated with assessments when the Assess operation is ON). Output model (identical to the the input model when Learn operation is OFF). Output of statistical tests. Some engines do not offer such tests yet, in which case this output will always be empty even when the Test operation is ON.

Thanks:
Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories for implementing this class. Updated by Philippe Pebay, Kitware SAS 2012
Examples:
vtkStatisticsAlgorithm (Examples)
Tests:
vtkStatisticsAlgorithm (Tests)

Definition at line 75 of file vtkStatisticsAlgorithm.h.


Member Typedef Documentation


Member Enumeration Documentation

enumeration values to specify input port types

Enumerator:
INPUT_DATA 

Port 0 is for learn data.

LEARN_PARAMETERS 

Port 1 is for learn parameters (initial guesses, etc.)

INPUT_MODEL 

Port 2 is for a priori models.

Definition at line 84 of file vtkStatisticsAlgorithm.h.

enumeration values to specify output port types

Enumerator:
OUTPUT_DATA 

Output 0 mirrors the input data, plus optional assessment columns.

OUTPUT_MODEL 

Output 1 contains any generated model.

ASSESSMENT 

This is an old, deprecated name for OUTPUT_TEST.

OUTPUT_TEST 

Output 2 contains result of statistical test(s)

Reimplemented in vtkPairwiseExtractHistogram2D, and vtkExtractHistogram2D.

Definition at line 94 of file vtkStatisticsAlgorithm.h.


Constructor & Destructor Documentation


Member Function Documentation

static int vtkStatisticsAlgorithm::IsTypeOf ( const char *  name) [static]
virtual int vtkStatisticsAlgorithm::IsA ( const char *  name) [virtual]
virtual vtkObjectBase* vtkStatisticsAlgorithm::NewInstanceInternal ( ) const [protected, virtual]
void vtkStatisticsAlgorithm::PrintSelf ( ostream &  os,
vtkIndent  indent 
) [virtual]

A convenience method for setting learn input parameters (if one is expected or allowed). It is equivalent to calling SetInputConnection( 1, params );

Definition at line 110 of file vtkStatisticsAlgorithm.h.

virtual void vtkStatisticsAlgorithm::SetLearnOptionParameters ( vtkDataObject params) [inline, virtual]

A convenience method for setting learn input parameters (if one is expected or allowed). It is equivalent to calling SetInputData( 1, params );

Definition at line 118 of file vtkStatisticsAlgorithm.h.

virtual void vtkStatisticsAlgorithm::SetInputModelConnection ( vtkAlgorithmOutput model) [inline, virtual]

A convenience method for setting the input model connection (if one is expected or allowed). It is equivalent to calling SetInputConnection( 2, model );

Definition at line 126 of file vtkStatisticsAlgorithm.h.

virtual void vtkStatisticsAlgorithm::SetInputModel ( vtkDataObject model) [inline, virtual]

A convenience method for setting the input model (if one is expected or allowed). It is equivalent to calling SetInputData( 2, model );

Definition at line 133 of file vtkStatisticsAlgorithm.h.

virtual void vtkStatisticsAlgorithm::SetLearnOption ( bool  ) [virtual]

Set/Get the Learn operation.

virtual bool vtkStatisticsAlgorithm::GetLearnOption ( ) [virtual]

Set/Get the Learn operation.

virtual void vtkStatisticsAlgorithm::SetDeriveOption ( bool  ) [virtual]

Set/Get the Derive operation.

virtual bool vtkStatisticsAlgorithm::GetDeriveOption ( ) [virtual]

Set/Get the Derive operation.

virtual void vtkStatisticsAlgorithm::SetAssessOption ( bool  ) [virtual]

Set/Get the Assess operation.

virtual bool vtkStatisticsAlgorithm::GetAssessOption ( ) [virtual]

Set/Get the Assess operation.

virtual void vtkStatisticsAlgorithm::SetTestOption ( bool  ) [virtual]

Set/Get the Test operation.

virtual bool vtkStatisticsAlgorithm::GetTestOption ( ) [virtual]

Set/Get the Test operation.

Set/Get the number of tables in the primary model.

Set/Get the number of tables in the primary model.

Set/get assessment names.

Set/get assessment names.

virtual void vtkStatisticsAlgorithm::SetColumnStatus ( const char *  namCol,
int  status 
) [virtual]

Add or remove a column from the current analysis request. Once all the column status values are set, call RequestSelectedColumns() before selecting another set of columns for a different analysis request. The way that columns selections are used varies from algorithm to algorithm. Note: the set of selected columns is maintained in vtkStatisticsAlgorithmPrivate::Buffer until RequestSelectedColumns() is called, at which point the set is appended to vtkStatisticsAlgorithmPrivate::Requests. If there are any columns in vtkStatisticsAlgorithmPrivate::Buffer at the time RequestData() is called, RequestSelectedColumns() will be called and the selection added to the list of requests.

Set the the status of each and every column in the current request to OFF (0).

Use the current column status values to produce a new request for statistics to be produced when RequestData() is called. See SetColumnStatus() for more information.

virtual void vtkStatisticsAlgorithm::ResetRequests ( ) [virtual]

Empty the list of current requests.

Return the number of requests. This does not include any request that is in the column-status buffer but for which RequestSelectedColumns() has not yet been called (even though it is possible this request will be honored when the filter is run -- see SetColumnStatus() for more information).

Return the number of columns for a given request.

virtual const char* vtkStatisticsAlgorithm::GetColumnForRequest ( vtkIdType  r,
vtkIdType  c 
) [virtual]

Provide the name of the c-th column for the r-th request. For the version of this routine that returns an integer, if the request or column does not exist because r or c is out of bounds, this routine returns 0 and the value of columnName is unspecified. Otherwise, it returns 1 and the value of columnName is set. For the version of this routine that returns const char*, if the request or column does not exist because r or c is out of bounds, the routine returns NULL. Otherwise it returns the column name. This version is not thread-safe.

virtual int vtkStatisticsAlgorithm::GetColumnForRequest ( vtkIdType  r,
vtkIdType  c,
vtkStdString columnName 
) [virtual]

Provide the name of the c-th column for the r-th request. For the version of this routine that returns an integer, if the request or column does not exist because r or c is out of bounds, this routine returns 0 and the value of columnName is unspecified. Otherwise, it returns 1 and the value of columnName is set. For the version of this routine that returns const char*, if the request or column does not exist because r or c is out of bounds, the routine returns NULL. Otherwise it returns the column name. This version is not thread-safe.

void vtkStatisticsAlgorithm::AddColumn ( const char *  namCol)

Convenience method to create a request with a single column name namCol in a single call; this is the preferred method to select columns, ensuring selection consistency (a single column per request). Warning: no name checking is performed on namCol; it is the user's responsibility to use valid column names.

void vtkStatisticsAlgorithm::AddColumnPair ( const char *  namColX,
const char *  namColY 
)

Convenience method to create a request with a single column name pair (namColX, namColY) in a single call; this is the preferred method to select columns pairs, ensuring selection consistency (a pair of columns per request). Unlike SetColumnStatus(), you need not call RequestSelectedColumns() after AddColumnPair(). Warning: namColX and namColY are only checked for their validity as strings; no check is made that either are valid column names.

virtual bool vtkStatisticsAlgorithm::SetParameter ( const char *  parameter,
int  index,
vtkVariant  value 
) [virtual]

A convenience method (in particular for access from other applications) to set parameter values of Learn mode. Return true if setting of requested parameter name was excuted, false otherwise. NB: default method (which is sufficient for most statistics algorithms) does not have any Learn parameters to set and always returns false.

Reimplemented in vtkPCAStatistics, vtkKMeansStatistics, and vtkOrderStatistics.

virtual int vtkStatisticsAlgorithm::FillInputPortInformation ( int  port,
vtkInformation info 
) [protected, virtual]

Fill the input port information objects for this algorithm. This is invoked by the first call to GetInputPortInformation for each port so subclasses can specify what they can handle.

Reimplemented from vtkTableAlgorithm.

Reimplemented in vtkPCAStatistics.

virtual int vtkStatisticsAlgorithm::FillOutputPortInformation ( int  port,
vtkInformation info 
) [protected, virtual]

Fill the output port information objects for this algorithm. This is invoked by the first call to GetOutputPortInformation for each port so subclasses can specify what they can handle.

Reimplemented from vtkTableAlgorithm.

Reimplemented in vtkExtractHistogram2D, and vtkPairwiseExtractHistogram2D.

virtual int vtkStatisticsAlgorithm::RequestData ( vtkInformation request,
vtkInformationVector **  inputVector,
vtkInformationVector outputVector 
) [protected, virtual]

This is called by the superclass. This is the method you should override.

Reimplemented from vtkTableAlgorithm.

virtual void vtkStatisticsAlgorithm::Learn ( vtkTable ,
vtkTable ,
vtkMultiBlockDataSet  
) [protected, pure virtual]
virtual void vtkStatisticsAlgorithm::Derive ( vtkMultiBlockDataSet ) [protected, pure virtual]
virtual void vtkStatisticsAlgorithm::Assess ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable  
) [protected, pure virtual]
void vtkStatisticsAlgorithm::Assess ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable ,
int   
) [protected]

A convenience implementation for generic assessment with variable number of variables.

virtual void vtkStatisticsAlgorithm::Test ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable  
) [protected, pure virtual]
virtual void vtkStatisticsAlgorithm::SelectAssessFunctor ( vtkTable outData,
vtkDataObject inMeta,
vtkStringArray rowNames,
AssessFunctor *&  dfunc 
) [protected, pure virtual]

Member Data Documentation

Definition at line 325 of file vtkStatisticsAlgorithm.h.

Definition at line 326 of file vtkStatisticsAlgorithm.h.

Definition at line 327 of file vtkStatisticsAlgorithm.h.

Definition at line 328 of file vtkStatisticsAlgorithm.h.

Definition at line 329 of file vtkStatisticsAlgorithm.h.

Definition at line 330 of file vtkStatisticsAlgorithm.h.

Definition at line 331 of file vtkStatisticsAlgorithm.h.


The documentation for this class was generated from the following file: