VTK
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes
vtkHighestDensityRegionsStatistics Class Reference

Compute a random vector of density f from input observations points. f is computed using a smooth kernel method. More...

#include <vtkHighestDensityRegionsStatistics.h>

Inheritance diagram for vtkHighestDensityRegionsStatistics:
Inheritance graph
[legend]
Collaboration diagram for vtkHighestDensityRegionsStatistics:
Collaboration graph
[legend]

List of all members.

Public Types

typedef vtkStatisticsAlgorithm Superclass

Public Member Functions

virtual int IsA (const char *type)
vtkHighestDensityRegionsStatisticsNewInstance () const
virtual void PrintSelf (ostream &os, vtkIndent indent)
void SetSigma (double sigma)
virtual void Aggregate (vtkDataObjectCollection *, vtkMultiBlockDataSet *)
virtual doubleGetSmoothHC1 ()
virtual void GetSmoothHC1 (double data[2])
virtual void SetSmoothHC1 (double data[])
virtual doubleGetSmoothHC2 ()
virtual void GetSmoothHC2 (double data[2])
virtual void SetSmoothHC2 (double data[])

Static Public Member Functions

static int IsTypeOf (const char *type)
static
vtkHighestDensityRegionsStatistics
SafeDownCast (vtkObjectBase *o)
static
vtkHighestDensityRegionsStatistics
New ()

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 vtkHighestDensityRegionsStatistics ()
 ~vtkHighestDensityRegionsStatistics ()
virtual void Derive (vtkMultiBlockDataSet *)
double ComputeHDR (vtkDataArray *inObservations, vtkDataArray *outDensity)
virtual void Learn (vtkTable *, vtkTable *, vtkMultiBlockDataSet *)
virtual void Assess (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)
virtual void Test (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)
virtual void SelectAssessFunctor (vtkTable *, vtkDataObject *, vtkStringArray *, AssessFunctor *&)

Protected Attributes

vtkIdType NumberOfRequestedColumnsPair
double SmoothHC1 [2]
double SmoothHC2 [2]

Detailed Description

Compute a random vector of density f from input observations points. f is computed using a smooth kernel method.

Given a selection of pairs of columns of interest, this class provides the following functionalities, depending on the chosen execution options: Learn: calculates density estimator f of a random vector using a smooth gaussian kernel. The output metadata on port OUTPUT_MODEL is a multiblock dataset containing at one vtkTable holding three columns which are for the first columns the input columns of interest and for the last columns the density estimators of each input pair of columns of interest. Derive: calculate normalized (as a percentage) quantiles coming from Learn output. The second block of the multibloc dataset contains a vtkTable holding some pairs of columns which are for the second one the quantiles ordered from the stronger to the lower and for the first one the correspondand quantile index. Assess: not implemented. Test: not implemented.

Tests:
vtkHighestDensityRegionsStatistics (Tests)

Definition at line 50 of file vtkHighestDensityRegionsStatistics.h.


Member Typedef Documentation

Reimplemented from vtkStatisticsAlgorithm.

Definition at line 54 of file vtkHighestDensityRegionsStatistics.h.


Constructor & Destructor Documentation


Member Function Documentation

static int vtkHighestDensityRegionsStatistics::IsTypeOf ( const char *  name) [static]

Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkStatisticsAlgorithm.

virtual int vtkHighestDensityRegionsStatistics::IsA ( const char *  name) [virtual]

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkStatisticsAlgorithm.

Reimplemented from vtkStatisticsAlgorithm.

Reimplemented from vtkStatisticsAlgorithm.

Reimplemented from vtkStatisticsAlgorithm.

virtual void vtkHighestDensityRegionsStatistics::PrintSelf ( ostream &  os,
vtkIndent  indent 
) [virtual]

Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkStatisticsAlgorithm.

Create an object with Debug turned off, modified time initialized to zero, and reference counting on.

Reimplemented from vtkTableAlgorithm.

Given a collection of models, calculate aggregate model

Implements vtkStatisticsAlgorithm.

Definition at line 60 of file vtkHighestDensityRegionsStatistics.h.

H is a positive matrix that defines the smooth direction. In a classical HDR, we don't set a specific smooth direction for the H matrix parameter (SmoothHC1, SmoothHC2). That mean H will be in a diagonal form and equal to sigma * Id.

Get Smooth H matrix parameter of the HDR.

virtual void vtkHighestDensityRegionsStatistics::GetSmoothHC1 ( double  data[2]) [virtual]

Get Smooth H matrix parameter of the HDR.

virtual void vtkHighestDensityRegionsStatistics::SetSmoothHC1 ( double  data[]) [virtual]

Get Smooth H matrix parameter of the HDR.

Get Smooth H matrix parameter of the HDR.

virtual void vtkHighestDensityRegionsStatistics::GetSmoothHC2 ( double  data[2]) [virtual]

Get Smooth H matrix parameter of the HDR.

virtual void vtkHighestDensityRegionsStatistics::SetSmoothHC2 ( double  data[]) [virtual]

Get Smooth H matrix parameter of the HDR.

virtual void vtkHighestDensityRegionsStatistics::Learn ( vtkTable ,
vtkTable ,
vtkMultiBlockDataSet  
) [protected, virtual]

Execute the calculations required by the Learn option.

Implements vtkStatisticsAlgorithm.

virtual void vtkHighestDensityRegionsStatistics::Derive ( vtkMultiBlockDataSet ) [protected, virtual]

Execute the calculations required by the Derive option.

Implements vtkStatisticsAlgorithm.

virtual void vtkHighestDensityRegionsStatistics::Assess ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable  
) [inline, protected, virtual]

Execute the calculations required by the Assess option.

Implements vtkStatisticsAlgorithm.

Definition at line 94 of file vtkHighestDensityRegionsStatistics.h.

virtual void vtkHighestDensityRegionsStatistics::Test ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable  
) [inline, protected, virtual]

Execute the calculations required by the Test option.

Implements vtkStatisticsAlgorithm.

Definition at line 101 of file vtkHighestDensityRegionsStatistics.h.

virtual void vtkHighestDensityRegionsStatistics::SelectAssessFunctor ( vtkTable ,
vtkDataObject ,
vtkStringArray ,
AssessFunctor *&   
) [inline, protected, virtual]

Provide the appropriate assessment functor.

Implements vtkStatisticsAlgorithm.

Definition at line 109 of file vtkHighestDensityRegionsStatistics.h.

double vtkHighestDensityRegionsStatistics::ComputeHDR ( vtkDataArray inObservations,
vtkDataArray outDensity 
) [protected]

Fill outDensity with density vector that is computed from inObservations values. This method uses a Gaussian kernel. For n observations and with X an observation point: f(X) = (1 / n) * Sum(KH(X -Xi)) for (i = 1 to n). Look ComputeSmoothGaussianKernel for KH kernel definition.


Member Data Documentation

Store the smooth matrix parameter H. Specify a smooth direction for the Gaussian kernel.

Definition at line 126 of file vtkHighestDensityRegionsStatistics.h.

Store the smooth matrix parameter H. Specify a smooth direction for the Gaussian kernel.

Definition at line 127 of file vtkHighestDensityRegionsStatistics.h.

Store the number of requested columns pair computed by learn method.

Definition at line 131 of file vtkHighestDensityRegionsStatistics.h.


The documentation for this class was generated from the following file: