VTK
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
vtkPCAStatistics Class Reference

A class for multivariate principal component analysis. More...

#include <vtkPCAStatistics.h>

Inheritance diagram for vtkPCAStatistics:
[legend]
Collaboration diagram for vtkPCAStatistics:
[legend]

Public Types

typedef vtkMultiCorrelativeStatistics Superclass
 
enum  NormalizationType {
  NONE, TRIANGLE_SPECIFIED, DIAGONAL_SPECIFIED, DIAGONAL_VARIANCE,
  NUM_NORMALIZATION_SCHEMES
}
 
enum  ProjectionType { FULL_BASIS, FIXED_BASIS_SIZE, FIXED_BASIS_ENERGY, NUM_BASIS_SCHEMES }
 
- Public Types inherited from vtkMultiCorrelativeStatistics
typedef vtkStatisticsAlgorithm Superclass
 
- Public Types inherited from vtkStatisticsAlgorithm
typedef vtkTableAlgorithm Superclass
 
enum  InputPorts { INPUT_DATA = 0, LEARN_PARAMETERS = 1, INPUT_MODEL = 2 }
 
enum  OutputIndices { OUTPUT_DATA = 0, OUTPUT_MODEL = 1, OUTPUT_TEST = 2 }
 
- Public Types inherited from vtkTableAlgorithm
typedef vtkAlgorithm Superclass
 
- Public Types inherited from vtkAlgorithm
typedef vtkObject Superclass
 
enum  DesiredOutputPrecision { SINGLE_PRECISION, DOUBLE_PRECISION, DEFAULT_PRECISION }
 
- Public Types inherited from vtkObject
typedef vtkObjectBase Superclass
 

Public Member Functions

virtual int IsA (const char *type)
 
vtkPCAStatisticsNewInstance () const
 
virtual void PrintSelf (ostream &os, vtkIndent indent)
 
virtual void SetNormalizationScheme (int)
 
virtual int GetNormalizationScheme ()
 
virtual void SetNormalizationSchemeByName (const char *sname)
 
virtual const char * GetNormalizationSchemeName (int scheme)
 
virtual vtkTableGetSpecifiedNormalization ()
 
virtual void SetSpecifiedNormalization (vtkTable *)
 
void GetEigenvalues (int request, vtkDoubleArray *)
 
void GetEigenvalues (vtkDoubleArray *)
 
double GetEigenvalue (int request, int i)
 
double GetEigenvalue (int i)
 
void GetEigenvectors (int request, vtkDoubleArray *eigenvectors)
 
void GetEigenvectors (vtkDoubleArray *eigenvectors)
 
void GetEigenvector (int i, vtkDoubleArray *eigenvector)
 
void GetEigenvector (int request, int i, vtkDoubleArray *eigenvector)
 
virtual void SetBasisScheme (int)
 
virtual int GetBasisScheme ()
 
virtual const char * GetBasisSchemeName (int schemeIndex)
 
virtual void SetBasisSchemeByName (const char *schemeName)
 
virtual void SetFixedBasisSize (int)
 
virtual int GetFixedBasisSize ()
 
virtual void SetFixedBasisEnergy (double)
 
virtual double GetFixedBasisEnergy ()
 
virtual bool SetParameter (const char *parameter, int index, vtkVariant value)
 
- Public Member Functions inherited from vtkMultiCorrelativeStatistics
vtkMultiCorrelativeStatisticsNewInstance () const
 
virtual void Aggregate (vtkDataObjectCollection *, vtkMultiBlockDataSet *)
 
virtual void SetMedianAbsoluteDeviation (bool)
 
virtual bool GetMedianAbsoluteDeviation ()
 
virtual void MedianAbsoluteDeviationOn ()
 
virtual void MedianAbsoluteDeviationOff ()
 
- Public Member Functions inherited from vtkStatisticsAlgorithm
vtkStatisticsAlgorithmNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent)
 
virtual void SetColumnStatus (const char *namCol, int status)
 
virtual void ResetAllColumnStates ()
 
virtual int RequestSelectedColumns ()
 
virtual void ResetRequests ()
 
virtual vtkIdType GetNumberOfRequests ()
 
virtual vtkIdType GetNumberOfColumnsForRequest (vtkIdType request)
 
void AddColumn (const char *namCol)
 
void AddColumnPair (const char *namColX, const char *namColY)
 
virtual void SetLearnOptionParameterConnection (vtkAlgorithmOutput *params)
 
virtual void SetLearnOptionParameters (vtkDataObject *params)
 
virtual void SetInputModelConnection (vtkAlgorithmOutput *model)
 
virtual void SetInputModel (vtkDataObject *model)
 
virtual void SetLearnOption (bool)
 
virtual bool GetLearnOption ()
 
virtual void SetDeriveOption (bool)
 
virtual bool GetDeriveOption ()
 
virtual void SetAssessOption (bool)
 
virtual bool GetAssessOption ()
 
virtual void SetTestOption (bool)
 
virtual bool GetTestOption ()
 
virtual void SetNumberOfPrimaryTables (vtkIdType)
 
virtual vtkIdType GetNumberOfPrimaryTables ()
 
virtual void SetAssessNames (vtkStringArray *)
 
virtual vtkStringArrayGetAssessNames ()
 
virtual const char * GetColumnForRequest (vtkIdType r, vtkIdType c)
 
virtual int GetColumnForRequest (vtkIdType r, vtkIdType c, vtkStdString &columnName)
 
- Public Member Functions inherited from vtkTableAlgorithm
vtkTableAlgorithmNewInstance () const
 
virtual int ProcessRequest (vtkInformation *, vtkInformationVector **, vtkInformationVector *)
 
vtkTableGetOutput ()
 
vtkTableGetOutput (int index)
 
void SetInputData (vtkDataObject *obj)
 
void SetInputData (int index, vtkDataObject *obj)
 
- Public Member Functions inherited from vtkAlgorithm
vtkAlgorithmNewInstance () const
 
int HasExecutive ()
 
vtkExecutiveGetExecutive ()
 
virtual void SetExecutive (vtkExecutive *executive)
 
virtual int ModifyRequest (vtkInformation *request, int when)
 
vtkInformationGetInputPortInformation (int port)
 
vtkInformationGetOutputPortInformation (int port)
 
int GetNumberOfInputPorts ()
 
int GetNumberOfOutputPorts ()
 
void UpdateProgress (double amount)
 
vtkInformationGetInputArrayInformation (int idx)
 
void RemoveAllInputs ()
 
vtkDataObjectGetOutputDataObject (int port)
 
virtual void RemoveInputConnection (int port, vtkAlgorithmOutput *input)
 
virtual void RemoveInputConnection (int port, int idx)
 
virtual void RemoveAllInputConnections (int port)
 
int GetNumberOfInputConnections (int port)
 
int GetTotalNumberOfInputConnections ()
 
vtkAlgorithmOutputGetInputConnection (int port, int index)
 
vtkAlgorithmGetInputAlgorithm (int port, int index, int &algPort)
 
vtkAlgorithmGetInputAlgorithm (int port, int index)
 
vtkExecutiveGetInputExecutive (int port, int index)
 
vtkInformationGetInputInformation (int port, int index)
 
vtkInformationGetOutputInformation (int port)
 
virtual void UpdateInformation ()
 
virtual void UpdateDataObject ()
 
virtual void PropagateUpdateExtent ()
 
virtual void UpdateWholeExtent ()
 
void ConvertTotalInputToPortConnection (int ind, int &port, int &conn)
 
int SetUpdateExtentToWholeExtent (int port)
 
int SetUpdateExtentToWholeExtent ()
 
void SetUpdateExtent (int port, int extent[6])
 
int ProcessRequest (vtkInformation *request, vtkCollection *inInfo, vtkInformationVector *outInfo)
 
virtual int ComputePipelineMTime (vtkInformation *request, vtkInformationVector **inInfoVec, vtkInformationVector *outInfoVec, int requestFromOutputPort, unsigned long *mtime)
 
virtual vtkInformationGetInformation ()
 
virtual void SetInformation (vtkInformation *)
 
virtual void Register (vtkObjectBase *o)
 
virtual void UnRegister (vtkObjectBase *o)
 
virtual void SetAbortExecute (int)
 
virtual int GetAbortExecute ()
 
virtual void AbortExecuteOn ()
 
virtual void AbortExecuteOff ()
 
virtual void SetProgress (double)
 
virtual double GetProgress ()
 
void SetProgressText (const char *ptext)
 
virtual char * GetProgressText ()
 
virtual unsigned long GetErrorCode ()
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, const char *name)
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType)
 
virtual void SetInputArrayToProcess (int idx, vtkInformation *info)
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, const char *fieldAssociation, const char *attributeTypeorName)
 
vtkDataObjectGetInputDataObject (int port, int connection)
 
virtual void SetInputConnection (int port, vtkAlgorithmOutput *input)
 
virtual void SetInputConnection (vtkAlgorithmOutput *input)
 
virtual void AddInputConnection (int port, vtkAlgorithmOutput *input)
 
virtual void AddInputConnection (vtkAlgorithmOutput *input)
 
virtual void SetInputDataObject (int port, vtkDataObject *data)
 
virtual void SetInputDataObject (vtkDataObject *data)
 
virtual void AddInputDataObject (int port, vtkDataObject *data)
 
virtual void AddInputDataObject (vtkDataObject *data)
 
vtkAlgorithmOutputGetOutputPort (int index)
 
vtkAlgorithmOutputGetOutputPort ()
 
vtkAlgorithmGetInputAlgorithm ()
 
vtkExecutiveGetInputExecutive ()
 
vtkInformationGetInputInformation ()
 
virtual void Update (int port)
 
virtual void Update ()
 
virtual void SetReleaseDataFlag (int)
 
virtual int GetReleaseDataFlag ()
 
void ReleaseDataFlagOn ()
 
void ReleaseDataFlagOff ()
 
int UpdateExtentIsEmpty (vtkInformation *pinfo, vtkDataObject *output)
 
int UpdateExtentIsEmpty (vtkInformation *pinfo, int extentType)
 
void SetUpdateExtent (int port, int piece, int numPieces, int ghostLevel)
 
void SetUpdateExtent (int piece, int numPieces, int ghostLevel)
 
void SetUpdateExtent (int extent[6])
 
intGetUpdateExtent ()
 
intGetUpdateExtent (int port)
 
void GetUpdateExtent (int &x0, int &x1, int &y0, int &y1, int &z0, int &z1)
 
void GetUpdateExtent (int port, int &x0, int &x1, int &y0, int &y1, int &z0, int &z1)
 
void GetUpdateExtent (int extent[6])
 
void GetUpdateExtent (int port, int extent[6])
 
int GetUpdatePiece ()
 
int GetUpdatePiece (int port)
 
int GetUpdateNumberOfPieces ()
 
int GetUpdateNumberOfPieces (int port)
 
int GetUpdateGhostLevel ()
 
int GetUpdateGhostLevel (int port)
 
void SetProgressObserver (vtkProgressObserver *)
 
virtual vtkProgressObserverGetProgressObserver ()
 
- Public Member Functions inherited from vtkObject
vtkObjectNewInstance () const
 
virtual void DebugOn ()
 
virtual void DebugOff ()
 
bool GetDebug ()
 
void SetDebug (bool debugFlag)
 
virtual void Modified ()
 
virtual unsigned long GetMTime ()
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 
vtkCommandGetCommand (unsigned long tag)
 
void RemoveObserver (vtkCommand *)
 
void RemoveObservers (unsigned long event, vtkCommand *)
 
void RemoveObservers (const char *event, vtkCommand *)
 
int HasObserver (unsigned long event, vtkCommand *)
 
int HasObserver (const char *event, vtkCommand *)
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
int HasObserver (unsigned long event)
 
int HasObserver (const char *event)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 
int InvokeEvent (unsigned long event, void *callData)
 
int InvokeEvent (const char *event, void *callData)
 
int InvokeEvent (unsigned long event)
 
int InvokeEvent (const char *event)
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 
virtual void Delete ()
 
virtual void FastDelete ()
 
void Print (ostream &os)
 
void SetReferenceCount (int)
 
void PrintRevisions (ostream &)
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 
int GetReferenceCount ()
 

Static Public Member Functions

static int IsTypeOf (const char *type)
 
static vtkPCAStatisticsSafeDownCast (vtkObjectBase *o)
 
static vtkPCAStatisticsNew ()
 
- Static Public Member Functions inherited from vtkMultiCorrelativeStatistics
static int IsTypeOf (const char *type)
 
static vtkMultiCorrelativeStatisticsSafeDownCast (vtkObjectBase *o)
 
static vtkMultiCorrelativeStatisticsNew ()
 
- Static Public Member Functions inherited from vtkStatisticsAlgorithm
static int IsTypeOf (const char *type)
 
static vtkStatisticsAlgorithmSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkTableAlgorithm
static vtkTableAlgorithmNew ()
 
static int IsTypeOf (const char *type)
 
static vtkTableAlgorithmSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkAlgorithm
static vtkAlgorithmNew ()
 
static int IsTypeOf (const char *type)
 
static vtkAlgorithmSafeDownCast (vtkObjectBase *o)
 
static vtkInformationIntegerKeyINPUT_IS_OPTIONAL ()
 
static vtkInformationIntegerKeyINPUT_IS_REPEATABLE ()
 
static vtkInformationInformationVectorKeyINPUT_REQUIRED_FIELDS ()
 
static vtkInformationStringVectorKeyINPUT_REQUIRED_DATA_TYPE ()
 
static vtkInformationInformationVectorKeyINPUT_ARRAYS_TO_PROCESS ()
 
static vtkInformationIntegerKeyINPUT_PORT ()
 
static vtkInformationIntegerKeyINPUT_CONNECTION ()
 
static vtkInformationIntegerKeyCAN_PRODUCE_SUB_EXTENT ()
 
static vtkInformationIntegerKeyCAN_HANDLE_PIECE_REQUEST ()
 
static void SetDefaultExecutivePrototype (vtkExecutive *proto)
 
- Static Public Member Functions inherited from vtkObject
static int IsTypeOf (const char *type)
 
static vtkObjectSafeDownCast (vtkObjectBase *o)
 
static vtkObjectNew ()
 
static void BreakOnError ()
 
static void SetGlobalWarningDisplay (int val)
 
static void GlobalWarningDisplayOn ()
 
static void GlobalWarningDisplayOff ()
 
static int GetGlobalWarningDisplay ()
 
- Static Public Member Functions inherited from vtkObjectBase
static int IsTypeOf (const char *name)
 
static vtkObjectBaseNew ()
 

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 
 vtkPCAStatistics ()
 
 ~vtkPCAStatistics ()
 
virtual int FillInputPortInformation (int port, vtkInformation *info)
 
virtual void Derive (vtkMultiBlockDataSet *)
 
virtual vtkDoubleArrayCalculatePValues (vtkIdTypeArray *, vtkDoubleArray *)
 
virtual void Test (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)
 
virtual void Assess (vtkTable *, vtkMultiBlockDataSet *, vtkTable *)
 
virtual void SelectAssessFunctor (vtkTable *inData, vtkDataObject *inMeta, vtkStringArray *rowNames, AssessFunctor *&dfunc)
 
- Protected Member Functions inherited from vtkMultiCorrelativeStatistics
 vtkMultiCorrelativeStatistics ()
 
 ~vtkMultiCorrelativeStatistics ()
 
virtual void ComputeMedian (vtkTable *inData, vtkTable *outData)
 
virtual vtkOrderStatisticsCreateOrderStatisticsInstance ()
 
virtual void Learn (vtkTable *, vtkTable *, vtkMultiBlockDataSet *)
 
- Protected Member Functions inherited from vtkStatisticsAlgorithm
 vtkStatisticsAlgorithm ()
 
 ~vtkStatisticsAlgorithm ()
 
virtual int FillOutputPortInformation (int port, vtkInformation *info)
 
virtual int RequestData (vtkInformation *, vtkInformationVector **, vtkInformationVector *)
 
void Assess (vtkTable *, vtkMultiBlockDataSet *, vtkTable *, int)
 
- Protected Member Functions inherited from vtkTableAlgorithm
 vtkTableAlgorithm ()
 
 ~vtkTableAlgorithm ()
 
virtual int RequestInformation (vtkInformation *request, vtkInformationVector **inputVector, vtkInformationVector *outputVector)
 
virtual int RequestUpdateExtent (vtkInformation *, vtkInformationVector **, vtkInformationVector *)
 
- Protected Member Functions inherited from vtkAlgorithm
 vtkAlgorithm ()
 
 ~vtkAlgorithm ()
 
virtual void SetNumberOfInputPorts (int n)
 
virtual void SetNumberOfOutputPorts (int n)
 
int InputPortIndexInRange (int index, const char *action)
 
int OutputPortIndexInRange (int index, const char *action)
 
int GetInputArrayAssociation (int idx, vtkInformationVector **inputVector)
 
virtual vtkExecutiveCreateDefaultExecutive ()
 
virtual void ReportReferences (vtkGarbageCollector *)
 
virtual void SetNumberOfInputConnections (int port, int n)
 
int GetInputArrayAssociation (int idx, int connection, vtkInformationVector **inputVector)
 
int GetInputArrayAssociation (int idx, vtkDataObject *input)
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkInformationVector **inputVector)
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkInformationVector **inputVector, int &association)
 
vtkDataArrayGetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector)
 
vtkDataArrayGetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association)
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkDataObject *input)
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkDataObject *input, int &association)
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector)
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector, int &association)
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector)
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association)
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkDataObject *input)
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkDataObject *input, int &association)
 
vtkInformationGetInputArrayFieldInformation (int idx, vtkInformationVector **inputVector)
 
virtual void SetNthInputConnection (int port, int index, vtkAlgorithmOutput *input)
 
void SetInputDataInternal (int port, vtkDataObject *input)
 
void AddInputDataInternal (int port, vtkDataObject *input)
 
virtual void SetErrorCode (unsigned long)
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
virtual ~vtkObject ()
 
virtual void RegisterInternal (vtkObjectBase *, int check)
 
virtual void UnRegisterInternal (vtkObjectBase *, int check)
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=NULL)
 
void InternalReleaseFocus ()
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
virtual void CollectRevisions (ostream &)
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

int NormalizationScheme
 
int BasisScheme
 
int FixedBasisSize
 
double FixedBasisEnergy
 
- Protected Attributes inherited from vtkMultiCorrelativeStatistics
bool MedianAbsoluteDeviation
 
- Protected Attributes inherited from vtkStatisticsAlgorithm
vtkIdType NumberOfPrimaryTables
 
bool LearnOption
 
bool DeriveOption
 
bool AssessOption
 
bool TestOption
 
vtkStringArrayAssessNames
 
vtkStatisticsAlgorithmPrivateInternals
 
- Protected Attributes inherited from vtkAlgorithm
vtkInformationInformation
 
double Progress
 
char * ProgressText
 
vtkProgressObserverProgressObserver
 
unsigned long ErrorCode
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
- Protected Attributes inherited from vtkObjectBase
vtkAtomicInt32 ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 

Static Protected Attributes

static const char * BasisSchemeEnumNames [NUM_BASIS_SCHEMES+1]
 
static const char * NormalizationSchemeEnumNames [NUM_NORMALIZATION_SCHEMES+1]
 
- Static Protected Attributes inherited from vtkAlgorithm
static vtkExecutiveDefaultExecutivePrototype
 

Additional Inherited Members

- Public Attributes inherited from vtkAlgorithm
int AbortExecute
 
- Static Protected Member Functions inherited from vtkAlgorithm
static vtkInformationIntegerKeyPORT_REQUIREMENTS_FILLED ()
 

Detailed Description

A class for multivariate principal component analysis.

This class derives from the multi-correlative statistics algorithm and uses the covariance matrix and Cholesky decomposition computed by it. However, when it finalizes the statistics in learn operation, the PCA class computes the SVD of the covariance matrix in order to obtain its eigenvectors.

In the assess operation, the input data are

In the test operation, a Jarque-Bera-Srivastava test of n-d normality is performed.

The Robust PCA can be computed by using the median instead of the mean, and the MAD matrix (Median Absolute Deviation) instead of the covariance matrix. This can be done by activating the MedianAbsoluteDeviation boolean (declared in the superclass).

Thanks:
Thanks to David Thompson, Philippe Pebay and Jackson Mayo from Sandia National Laboratories for implementing this class. Updated by Philippe Pebay, Kitware SAS 2012 Updated by Tristan Coulange and Joachim Pouderoux, Kitware SAS 2013
Tests:
vtkPCAStatistics (Tests)

Definition at line 64 of file vtkPCAStatistics.h.

Member Typedef Documentation

Definition at line 67 of file vtkPCAStatistics.h.

Member Enumeration Documentation

Methods by which the covariance matrix may be normalized.

Enumerator
NONE 

The covariance matrix should be used as computed.

TRIANGLE_SPECIFIED 

Normalize cov(i,j) by V(i,j) where V is supplied by the user.

DIAGONAL_SPECIFIED 

Normalize cov(i,j) by sqrt(V(i)*V(j)) where V is supplied by the user.

DIAGONAL_VARIANCE 

Normalize cov(i,j) by sqrt(cov(i,i)*cov(j,j)).

NUM_NORMALIZATION_SCHEMES 

The number of normalization schemes.

Definition at line 74 of file vtkPCAStatistics.h.

These are the enumeration values that SetBasisScheme() accepts and GetBasisScheme returns.

Enumerator
FULL_BASIS 

Use all entries in the basis matrix.

FIXED_BASIS_SIZE 

Use the first N entries in the basis matrix.

FIXED_BASIS_ENERGY 

Use consecutive basis matrix entries whose energies sum to at least T.

NUM_BASIS_SCHEMES 

The number of schemes (not a valid scheme).

Definition at line 87 of file vtkPCAStatistics.h.

Constructor & Destructor Documentation

vtkPCAStatistics::vtkPCAStatistics ( )
protected
vtkPCAStatistics::~vtkPCAStatistics ( )
protected

Member Function Documentation

static int vtkPCAStatistics::IsTypeOf ( const char *  type)
static
virtual int vtkPCAStatistics::IsA ( const char *  name)
virtual

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkMultiCorrelativeStatistics.

Reimplemented in vtkPCAStatisticsGnuR, and vtkPPCAStatistics.

static vtkPCAStatistics* vtkPCAStatistics::SafeDownCast ( vtkObjectBase o)
static
virtual vtkObjectBase* vtkPCAStatistics::NewInstanceInternal ( ) const
protectedvirtual

Reimplemented from vtkMultiCorrelativeStatistics.

Reimplemented in vtkPCAStatisticsGnuR, and vtkPPCAStatistics.

vtkPCAStatistics* vtkPCAStatistics::NewInstance ( ) const
virtual void vtkPCAStatistics::PrintSelf ( ostream &  os,
vtkIndent  indent 
)
virtual

Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkMultiCorrelativeStatistics.

Reimplemented in vtkPCAStatisticsGnuR, and vtkPPCAStatistics.

static vtkPCAStatistics* vtkPCAStatistics::New ( )
static
virtual void vtkPCAStatistics::SetNormalizationScheme ( int  )
virtual

This determines how (or if) the covariance matrix cov is normalized before PCA. When set to NONE, no normalization is performed. This is the default. When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided by V(i,j). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided by sqrt(V(i)*V(j)). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided by sqrt(cov(i,i)*cov(j,j)). Warning: Although this is accepted practice in some fields, some people think you should not turn this option on unless there is a good physically-based reason for doing so. Much better instead to determine how component magnitudes should be compared using physical reasoning and use DIAGONAL_SPECIFIED, TRIANGLE_SPECIFIED, or perform some pre-processing to shift and scale input data columns appropriately than to expect magical results from a shady normalization hack.

virtual int vtkPCAStatistics::GetNormalizationScheme ( )
virtual

This determines how (or if) the covariance matrix cov is normalized before PCA. When set to NONE, no normalization is performed. This is the default. When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided by V(i,j). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided by sqrt(V(i)*V(j)). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided by sqrt(cov(i,i)*cov(j,j)). Warning: Although this is accepted practice in some fields, some people think you should not turn this option on unless there is a good physically-based reason for doing so. Much better instead to determine how component magnitudes should be compared using physical reasoning and use DIAGONAL_SPECIFIED, TRIANGLE_SPECIFIED, or perform some pre-processing to shift and scale input data columns appropriately than to expect magical results from a shady normalization hack.

virtual void vtkPCAStatistics::SetNormalizationSchemeByName ( const char *  sname)
virtual

This determines how (or if) the covariance matrix cov is normalized before PCA. When set to NONE, no normalization is performed. This is the default. When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided by V(i,j). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided by sqrt(V(i)*V(j)). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided by sqrt(cov(i,i)*cov(j,j)). Warning: Although this is accepted practice in some fields, some people think you should not turn this option on unless there is a good physically-based reason for doing so. Much better instead to determine how component magnitudes should be compared using physical reasoning and use DIAGONAL_SPECIFIED, TRIANGLE_SPECIFIED, or perform some pre-processing to shift and scale input data columns appropriately than to expect magical results from a shady normalization hack.

virtual const char* vtkPCAStatistics::GetNormalizationSchemeName ( int  scheme)
virtual

This determines how (or if) the covariance matrix cov is normalized before PCA. When set to NONE, no normalization is performed. This is the default. When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided by V(i,j). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided by sqrt(V(i)*V(j)). The list V of normalization factors must be set using the SetNormalization method before the filter is executed. When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided by sqrt(cov(i,i)*cov(j,j)). Warning: Although this is accepted practice in some fields, some people think you should not turn this option on unless there is a good physically-based reason for doing so. Much better instead to determine how component magnitudes should be compared using physical reasoning and use DIAGONAL_SPECIFIED, TRIANGLE_SPECIFIED, or perform some pre-processing to shift and scale input data columns appropriately than to expect magical results from a shady normalization hack.

virtual vtkTable* vtkPCAStatistics::GetSpecifiedNormalization ( )
virtual

These methods allow you to set/get values used to normalize the covariance matrix before PCA. The normalization values apply to all requests, so you do not specify a single vector but a 3-column table. The first two columns contain the names of columns from input 0 and the third column contains the value to normalize the corresponding entry in the covariance matrix. The table must always have 3 columns even when the NormalizationScheme is DIAGONAL_SPECIFIED. When only diagonal entries are to be used, only table rows where the first two columns are identical to one another will be employed. If there are multiple rows specifying different values for the same pair of columns, the entry nearest the bottom of the table takes precedence. These functions are actually convenience methods that set/get the third input of the filter. Because the table is the third input, you may use other filters to produce a table of normalizations and have the pipeline take care of updates. Any missing entries will be set to 1.0 and a warning issued. An error will occur if the third input to the filter is not set and the NormalizationScheme is DIAGONAL_SPECIFIED or TRIANGLE_SPECIFIED. NOTE: SetSpecifiedNormalization( table ) is equivalent to SetInputData(3, table) and therefore does not make a pipeline connection.

virtual void vtkPCAStatistics::SetSpecifiedNormalization ( vtkTable )
virtual

These methods allow you to set/get values used to normalize the covariance matrix before PCA. The normalization values apply to all requests, so you do not specify a single vector but a 3-column table. The first two columns contain the names of columns from input 0 and the third column contains the value to normalize the corresponding entry in the covariance matrix. The table must always have 3 columns even when the NormalizationScheme is DIAGONAL_SPECIFIED. When only diagonal entries are to be used, only table rows where the first two columns are identical to one another will be employed. If there are multiple rows specifying different values for the same pair of columns, the entry nearest the bottom of the table takes precedence. These functions are actually convenience methods that set/get the third input of the filter. Because the table is the third input, you may use other filters to produce a table of normalizations and have the pipeline take care of updates. Any missing entries will be set to 1.0 and a warning issued. An error will occur if the third input to the filter is not set and the NormalizationScheme is DIAGONAL_SPECIFIED or TRIANGLE_SPECIFIED. NOTE: SetSpecifiedNormalization( table ) is equivalent to SetInputData(3, table) and therefore does not make a pipeline connection.

void vtkPCAStatistics::GetEigenvalues ( int  request,
vtkDoubleArray  
)

Get the eigenvalues. The eigenvalues are ordered according from largest to smallest. This function: void GetEigenvalues(int request, int i, vtkDoubleArray*); does all of the work. The other functions simply call this function with the appropriate parameters. These functions are not valid unless Update() has been called and the Derive option is turned on.

void vtkPCAStatistics::GetEigenvalues ( vtkDoubleArray )

Get the eigenvalues. The eigenvalues are ordered according from largest to smallest. This function: void GetEigenvalues(int request, int i, vtkDoubleArray*); does all of the work. The other functions simply call this function with the appropriate parameters. These functions are not valid unless Update() has been called and the Derive option is turned on.

double vtkPCAStatistics::GetEigenvalue ( int  request,
int  i 
)

Get the eigenvalues. The eigenvalues are ordered according from largest to smallest. This function: void GetEigenvalues(int request, int i, vtkDoubleArray*); does all of the work. The other functions simply call this function with the appropriate parameters. These functions are not valid unless Update() has been called and the Derive option is turned on.

double vtkPCAStatistics::GetEigenvalue ( int  i)

Get the eigenvalues. The eigenvalues are ordered according from largest to smallest. This function: void GetEigenvalues(int request, int i, vtkDoubleArray*); does all of the work. The other functions simply call this function with the appropriate parameters. These functions are not valid unless Update() has been called and the Derive option is turned on.

void vtkPCAStatistics::GetEigenvectors ( int  request,
vtkDoubleArray eigenvectors 
)

Get the eigenvectors. The eigenvectors are ordered according to the magnitude of their associated eigenvalues, sorted from largest to smallest. That is, eigenvector 0 corresponds to the largest eigenvalue. This function: void GetEigenvectors(int request, vtkDoubleArray* eigenvectors) does all of the work. The other functions are convenience functions that call this function with default arguments. These functions are not valid unless Update() has been called and the Derive option is turned on.

void vtkPCAStatistics::GetEigenvectors ( vtkDoubleArray eigenvectors)

Get the eigenvectors. The eigenvectors are ordered according to the magnitude of their associated eigenvalues, sorted from largest to smallest. That is, eigenvector 0 corresponds to the largest eigenvalue. This function: void GetEigenvectors(int request, vtkDoubleArray* eigenvectors) does all of the work. The other functions are convenience functions that call this function with default arguments. These functions are not valid unless Update() has been called and the Derive option is turned on.

void vtkPCAStatistics::GetEigenvector ( int  i,
vtkDoubleArray eigenvector 
)

Get the eigenvectors. The eigenvectors are ordered according to the magnitude of their associated eigenvalues, sorted from largest to smallest. That is, eigenvector 0 corresponds to the largest eigenvalue. This function: void GetEigenvectors(int request, vtkDoubleArray* eigenvectors) does all of the work. The other functions are convenience functions that call this function with default arguments. These functions are not valid unless Update() has been called and the Derive option is turned on.

void vtkPCAStatistics::GetEigenvector ( int  request,
int  i,
vtkDoubleArray eigenvector 
)

Get the eigenvectors. The eigenvectors are ordered according to the magnitude of their associated eigenvalues, sorted from largest to smallest. That is, eigenvector 0 corresponds to the largest eigenvalue. This function: void GetEigenvectors(int request, vtkDoubleArray* eigenvectors) does all of the work. The other functions are convenience functions that call this function with default arguments. These functions are not valid unless Update() has been called and the Derive option is turned on.

virtual void vtkPCAStatistics::SetBasisScheme ( int  )
virtual

This variable controls the dimensionality of output tuples in Assess operation. Consider the case where you have requested a PCA on D columns. When set to vtkPCAStatistics::FULL_BASIS, the entire set of basis vectors is used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of the same dimension as the input tuples. (That dimension is D, so there will be D additional columns added to the table for the request.) When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first N basis vectors are used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of dimension min(N,D). You must set N prior to assessing data using the SetFixedBasisSize() method. When N < D, this turns the PCA into a projection (instead of change of basis). When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of basis vectors used to derive new coordinates for each tuple will be the minimum number of columns N that satisfy

\[ \frac{\sum_{i=1}^{N} \lambda_i}{\sum_{i=1}^{D} \lambda_i} < T \]

You must set T prior to assessing data using the SetFixedBasisEnergy() method. When T < 1, this turns the PCA into a projection (instead of change of basis). By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.

virtual int vtkPCAStatistics::GetBasisScheme ( )
virtual

This variable controls the dimensionality of output tuples in Assess operation. Consider the case where you have requested a PCA on D columns. When set to vtkPCAStatistics::FULL_BASIS, the entire set of basis vectors is used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of the same dimension as the input tuples. (That dimension is D, so there will be D additional columns added to the table for the request.) When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first N basis vectors are used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of dimension min(N,D). You must set N prior to assessing data using the SetFixedBasisSize() method. When N < D, this turns the PCA into a projection (instead of change of basis). When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of basis vectors used to derive new coordinates for each tuple will be the minimum number of columns N that satisfy

\[ \frac{\sum_{i=1}^{N} \lambda_i}{\sum_{i=1}^{D} \lambda_i} < T \]

You must set T prior to assessing data using the SetFixedBasisEnergy() method. When T < 1, this turns the PCA into a projection (instead of change of basis). By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.

virtual const char* vtkPCAStatistics::GetBasisSchemeName ( int  schemeIndex)
virtual

This variable controls the dimensionality of output tuples in Assess operation. Consider the case where you have requested a PCA on D columns. When set to vtkPCAStatistics::FULL_BASIS, the entire set of basis vectors is used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of the same dimension as the input tuples. (That dimension is D, so there will be D additional columns added to the table for the request.) When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first N basis vectors are used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of dimension min(N,D). You must set N prior to assessing data using the SetFixedBasisSize() method. When N < D, this turns the PCA into a projection (instead of change of basis). When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of basis vectors used to derive new coordinates for each tuple will be the minimum number of columns N that satisfy

\[ \frac{\sum_{i=1}^{N} \lambda_i}{\sum_{i=1}^{D} \lambda_i} < T \]

You must set T prior to assessing data using the SetFixedBasisEnergy() method. When T < 1, this turns the PCA into a projection (instead of change of basis). By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.

virtual void vtkPCAStatistics::SetBasisSchemeByName ( const char *  schemeName)
virtual

This variable controls the dimensionality of output tuples in Assess operation. Consider the case where you have requested a PCA on D columns. When set to vtkPCAStatistics::FULL_BASIS, the entire set of basis vectors is used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of the same dimension as the input tuples. (That dimension is D, so there will be D additional columns added to the table for the request.) When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first N basis vectors are used to derive new coordinates for each tuple being assessed. In this mode, you are guaranteed to have output tuples of dimension min(N,D). You must set N prior to assessing data using the SetFixedBasisSize() method. When N < D, this turns the PCA into a projection (instead of change of basis). When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of basis vectors used to derive new coordinates for each tuple will be the minimum number of columns N that satisfy

\[ \frac{\sum_{i=1}^{N} \lambda_i}{\sum_{i=1}^{D} \lambda_i} < T \]

You must set T prior to assessing data using the SetFixedBasisEnergy() method. When T < 1, this turns the PCA into a projection (instead of change of basis). By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.

virtual void vtkPCAStatistics::SetFixedBasisSize ( int  )
virtual

The number of basis vectors to use. See SetBasisScheme() for more information. When FixedBasisSize <= 0 (the default), the fixed basis size scheme is equivalent to the full basis scheme.

virtual int vtkPCAStatistics::GetFixedBasisSize ( )
virtual

The number of basis vectors to use. See SetBasisScheme() for more information. When FixedBasisSize <= 0 (the default), the fixed basis size scheme is equivalent to the full basis scheme.

virtual void vtkPCAStatistics::SetFixedBasisEnergy ( double  )
virtual

The minimum energy the new basis should use, as a fraction. See SetBasisScheme() for more information. When FixedBasisEnergy >= 1 (the default), the fixed basis energy scheme is equivalent to the full basis scheme.

virtual double vtkPCAStatistics::GetFixedBasisEnergy ( )
virtual

The minimum energy the new basis should use, as a fraction. See SetBasisScheme() for more information. When FixedBasisEnergy >= 1 (the default), the fixed basis energy scheme is equivalent to the full basis scheme.

virtual bool vtkPCAStatistics::SetParameter ( const char *  parameter,
int  index,
vtkVariant  value 
)
virtual

A convenience method (in particular for access from other applications) to set parameter values. Return true if setting of requested parameter name was excuted, false otherwise.

Reimplemented from vtkStatisticsAlgorithm.

virtual int vtkPCAStatistics::FillInputPortInformation ( int  port,
vtkInformation info 
)
protectedvirtual

This algorithm accepts a vtkTable containing normalization values for its fourth input (port 3). We override FillInputPortInformation to indicate this.

Reimplemented from vtkStatisticsAlgorithm.

virtual void vtkPCAStatistics::Derive ( vtkMultiBlockDataSet )
protectedvirtual

Execute the calculations required by the Derive option.

Reimplemented from vtkMultiCorrelativeStatistics.

virtual void vtkPCAStatistics::Test ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable  
)
protectedvirtual

Execute the calculations required by the Test option.

Reimplemented from vtkMultiCorrelativeStatistics.

Reimplemented in vtkPPCAStatistics.

virtual void vtkPCAStatistics::Assess ( vtkTable ,
vtkMultiBlockDataSet ,
vtkTable  
)
protectedvirtual

Execute the calculations required by the Assess option.

Reimplemented from vtkMultiCorrelativeStatistics.

virtual vtkDoubleArray* vtkPCAStatistics::CalculatePValues ( vtkIdTypeArray ,
vtkDoubleArray  
)
protectedvirtual

Calculate p-value. This will be overridden using the object factory with an R implementation if R is present.

Reimplemented in vtkPCAStatisticsGnuR.

virtual void vtkPCAStatistics::SelectAssessFunctor ( vtkTable inData,
vtkDataObject inMeta,
vtkStringArray rowNames,
AssessFunctor *&  dfunc 
)
protectedvirtual

Provide the appropriate assessment functor.

Reimplemented from vtkMultiCorrelativeStatistics.

Member Data Documentation

int vtkPCAStatistics::NormalizationScheme
protected

Definition at line 268 of file vtkPCAStatistics.h.

int vtkPCAStatistics::BasisScheme
protected

Definition at line 269 of file vtkPCAStatistics.h.

int vtkPCAStatistics::FixedBasisSize
protected

Definition at line 270 of file vtkPCAStatistics.h.

double vtkPCAStatistics::FixedBasisEnergy
protected

Definition at line 271 of file vtkPCAStatistics.h.

const char* vtkPCAStatistics::BasisSchemeEnumNames[NUM_BASIS_SCHEMES+1]
staticprotected

Definition at line 274 of file vtkPCAStatistics.h.

const char* vtkPCAStatistics::NormalizationSchemeEnumNames[NUM_NORMALIZATION_SCHEMES+1]
staticprotected

Definition at line 275 of file vtkPCAStatistics.h.


The documentation for this class was generated from the following file: