Main Page   Class Hierarchy   Alphabetical List   Compound List   File List   Compound Members   File Members   Related Pages  

vtkHexahedron Class Reference

a cell that represents a 3D rectangular hexahedron. More...

#include <vtkHexahedron.h>

Inheritance diagram for vtkHexahedron:

Inheritance graph
[legend]
Collaboration diagram for vtkHexahedron:

Collaboration graph
[legend]
List of all members.

Public Methods

virtual const char * GetClassName ()
virtual int IsA (const char *type)
int EvaluatePosition (float x[3], float *closestPoint, int &subId, float pcoords[3], float &dist2, float *weights)
void EvaluateLocation (int &subId, float pcoords[3], float x[3], float *weights)
int IntersectWithLine (float p1[3], float p2[3], float tol, float &t, float x[3], float pcoords[3], int &subId)
int Triangulate (int index, vtkIdList *ptIds, vtkPoints *pts)
void Derivatives (int subId, float pcoords[3], float *values, int dim, float *derivs)
void JacobianInverse (float pcoords[3], double **inverse, float derivs[24])
virtual void GetEdgePoints (int edgeId, int *&pts)
virtual void GetFacePoints (int faceId, int *&pts)
vtkCellMakeObject ()
int GetCellType ()
int GetNumberOfEdges ()
int GetNumberOfFaces ()
vtkCellGetEdge (int edgeId)
vtkCellGetFace (int faceId)
int CellBoundary (int subId, float pcoords[3], vtkIdList *pts)
void Contour (float value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)

Static Public Methods

vtkHexahedron * New ()
int IsTypeOf (const char *type)
vtkHexahedron * SafeDownCast (vtkObject *o)
void InterpolationFunctions (float pcoords[3], float weights[8])
void InterpolationDerivs (float pcoords[3], float derivs[24])
int * GetEdgeArray (int edgeId)
int * GetFaceArray (int faceId)

Protected Methods

 vtkHexahedron ()
 ~vtkHexahedron ()

Protected Attributes

vtkLineLine
vtkQuadQuad

Detailed Description

a cell that represents a 3D rectangular hexahedron.

Date:
2001/11/02 16:41:06
Revision:
1.58

vtkHexahedron is a concrete implementation of vtkCell to represent a 3D rectangular hexahedron (e.g., "brick" topology).

Examples:
vtkHexahedron (Examples)
Tests:
vtkHexahedron (Tests)

Definition at line 63 of file vtkHexahedron.h.


Constructor & Destructor Documentation

vtkHexahedron::vtkHexahedron   [protected]
 

vtkHexahedron::~vtkHexahedron   [protected]
 


Member Function Documentation

vtkHexahedron* vtkHexahedron::New   [static]
 

Create an object with Debug turned off, modified time initialized to zero, and reference counting on.

Reimplemented from vtkObject.

virtual const char* vtkHexahedron::GetClassName   [virtual]
 

Return the class name as a string. This method is defined in all subclasses of vtkObject with the vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell3D.

int vtkHexahedron::IsTypeOf const char *    type [static]
 

Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell3D.

virtual int vtkHexahedron::IsA const char *    type [virtual]
 

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell3D.

vtkHexahedron* vtkHexahedron::SafeDownCast vtkObject   o [static]
 

Will cast the supplied object to vtkObject* is this is a safe operation (i.e., a safe downcast); otherwise NULL is returned. This method is defined in all subclasses of vtkObject with the vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkCell3D.

virtual void vtkHexahedron::GetEdgePoints int    edgeId,
int *&    pts
[virtual]
 

See vtkCell3D API for description of these methods.

Reimplemented from vtkCell3D.

virtual void vtkHexahedron::GetFacePoints int    faceId,
int *&    pts
[virtual]
 

See vtkCell3D API for description of these methods.

Reimplemented from vtkCell3D.

vtkCell* vtkHexahedron::MakeObject   [virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

int vtkHexahedron::GetCellType   [inline, virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

Definition at line 78 of file vtkHexahedron.h.

int vtkHexahedron::GetNumberOfEdges   [inline, virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

Definition at line 79 of file vtkHexahedron.h.

int vtkHexahedron::GetNumberOfFaces   [inline, virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

Definition at line 80 of file vtkHexahedron.h.

vtkCell* vtkHexahedron::GetEdge int    edgeId [virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

vtkCell* vtkHexahedron::GetFace int    faceId [virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

int vtkHexahedron::CellBoundary int    subId,
float    pcoords[3],
vtkIdList   pts
[virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

void vtkHexahedron::Contour float    value,
vtkDataArray   cellScalars,
vtkPointLocator   locator,
vtkCellArray   verts,
vtkCellArray   lines,
vtkCellArray   polys,
vtkPointData   inPd,
vtkPointData   outPd,
vtkCellData   inCd,
vtkIdType    cellId,
vtkCellData   outCd
[virtual]
 

See the vtkCell API for descriptions of these methods.

Reimplemented from vtkCell.

int vtkHexahedron::EvaluatePosition float    x[3],
float *    closestPoint,
int &    subId,
float    pcoords[3],
float &    dist2,
float *    weights
[virtual]
 

Given a point x[3] return inside(=1) or outside(=0) cell; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.

Reimplemented from vtkCell.

void vtkHexahedron::EvaluateLocation int &    subId,
float    pcoords[3],
float    x[3],
float *    weights
[virtual]
 

Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.)

Reimplemented from vtkCell.

int vtkHexahedron::IntersectWithLine float    p1[3],
float    p2[3],
float    tol,
float &    t,
float    x[3],
float    pcoords[3],
int &    subId
[virtual]
 

Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition and tolerance. The method returns non-zero value if intersection occurs.

Reimplemented from vtkCell.

int vtkHexahedron::Triangulate int    index,
vtkIdList   ptIds,
vtkPoints   pts
[virtual]
 

Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned.

Reimplemented from vtkCell.

void vtkHexahedron::Derivatives int    subId,
float    pcoords[3],
float *    values,
int    dim,
float *    derivs
[virtual]
 

Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).

Reimplemented from vtkCell.

void vtkHexahedron::InterpolationFunctions float    pcoords[3],
float    weights[8]
[static]
 

Hexahedron specific

void vtkHexahedron::InterpolationDerivs float    pcoords[3],
float    derivs[24]
[static]
 

Hexahedron specific

int* vtkHexahedron::GetEdgeArray int    edgeId [static]
 

Hexahedron specific

int* vtkHexahedron::GetFaceArray int    faceId [static]
 

Hexahedron specific

void vtkHexahedron::JacobianInverse float    pcoords[3],
double **    inverse,
float    derivs[24]
 

Given parametric coordinates compute inverse Jacobian transformation matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation function derivatives.


Member Data Documentation

vtkLine* vtkHexahedron::Line [protected]
 

Definition at line 119 of file vtkHexahedron.h.

vtkQuad* vtkHexahedron::Quad [protected]
 

Definition at line 120 of file vtkHexahedron.h.


The documentation for this class was generated from the following file:
Generated on Thu Mar 28 14:29:52 2002 for VTK by doxygen1.2.11.1 written by Dimitri van Heesch, © 1997-2001