VTK
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
vtkRenderWindow Class Referenceabstract

create a window for renderers to draw into More...

#include <vtkRenderWindow.h>

Inheritance diagram for vtkRenderWindow:
[legend]
Collaboration diagram for vtkRenderWindow:
[legend]

Public Types

typedef vtkWindow Superclass
 
- Public Types inherited from vtkWindow
typedef vtkObject Superclass
 
- Public Types inherited from vtkObject
typedef vtkObjectBase Superclass
 

Public Member Functions

virtual int IsA (const char *type)
 
vtkRenderWindowNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent)
 
virtual void AddRenderer (vtkRenderer *)
 
void RemoveRenderer (vtkRenderer *)
 
int HasRenderer (vtkRenderer *)
 
vtkRendererCollectionGetRenderers ()
 
void CaptureGL2PSSpecialProps (vtkCollection *specialProps)
 
virtual void Render ()
 
virtual void Start ()=0
 
virtual void Finalize ()=0
 
virtual void Frame ()=0
 
virtual void WaitForCompletion ()=0
 
virtual void CopyResultFrame ()
 
virtual vtkRenderWindowInteractorMakeRenderWindowInteractor ()
 
const char * GetStereoTypeAsString ()
 
virtual void StereoUpdate ()
 
virtual void StereoMidpoint ()
 
virtual void StereoRenderComplete ()
 
virtual void WindowRemap ()=0
 
virtual int GetIsPicking ()
 
virtual void SetIsPicking (int)
 
virtual void IsPickingOn ()
 
virtual void IsPickingOff ()
 
virtual int GetEventPending ()=0
 
virtual int CheckInRenderStatus ()
 
virtual void ClearInRenderStatus ()
 
void SetInteractor (vtkRenderWindowInteractor *)
 
virtual void UnRegister (vtkObjectBase *o)
 
virtual bool InitializeFromCurrentContext ()
 
virtual void MakeCurrent ()=0
 
virtual bool IsCurrent ()=0
 
virtual bool IsDrawable ()
 
virtual void SetForceMakeCurrent ()
 
virtual const char * ReportCapabilities ()
 
virtual int SupportsOpenGL ()
 
virtual int IsDirect ()
 
virtual int GetDepthBufferSize ()=0
 
virtual int GetColorBufferSizes (int *rgba)=0
 
virtual int GetCapturingGL2PSSpecialProps ()
 
virtual void HideCursor ()=0
 
virtual void ShowCursor ()=0
 
virtual void SetCursorPosition (int, int)
 
virtual void SetCurrentCursor (int)
 
virtual int GetCurrentCursor ()
 
virtual void SetFullScreen (int)=0
 
virtual int GetFullScreen ()
 
virtual void FullScreenOn ()
 
virtual void FullScreenOff ()
 
virtual void SetBorders (int)
 
virtual int GetBorders ()
 
virtual void BordersOn ()
 
virtual void BordersOff ()
 
virtual int GetStereoCapableWindow ()
 
virtual void StereoCapableWindowOn ()
 
virtual void StereoCapableWindowOff ()
 
virtual void SetStereoCapableWindow (int capable)
 
virtual int GetStereoRender ()
 
void SetStereoRender (int stereo)
 
virtual void StereoRenderOn ()
 
virtual void StereoRenderOff ()
 
virtual void SetAlphaBitPlanes (int)
 
virtual int GetAlphaBitPlanes ()
 
virtual void AlphaBitPlanesOn ()
 
virtual void AlphaBitPlanesOff ()
 
virtual void SetPointSmoothing (int)
 
virtual int GetPointSmoothing ()
 
virtual void PointSmoothingOn ()
 
virtual void PointSmoothingOff ()
 
virtual void SetLineSmoothing (int)
 
virtual int GetLineSmoothing ()
 
virtual void LineSmoothingOn ()
 
virtual void LineSmoothingOff ()
 
virtual void SetPolygonSmoothing (int)
 
virtual int GetPolygonSmoothing ()
 
virtual void PolygonSmoothingOn ()
 
virtual void PolygonSmoothingOff ()
 
virtual int GetStereoType ()
 
virtual void SetStereoType (int)
 
void SetStereoTypeToCrystalEyes ()
 
void SetStereoTypeToRedBlue ()
 
void SetStereoTypeToInterlaced ()
 
void SetStereoTypeToLeft ()
 
void SetStereoTypeToRight ()
 
void SetStereoTypeToDresden ()
 
void SetStereoTypeToAnaglyph ()
 
void SetStereoTypeToCheckerboard ()
 
void SetStereoTypeToSplitViewportHorizontal ()
 
void SetStereoTypeToFake ()
 
virtual void SetAnaglyphColorSaturation (float)
 
virtual float GetAnaglyphColorSaturation ()
 
virtual void SetAnaglyphColorMask (int, int)
 
void SetAnaglyphColorMask (int[2])
 
virtual intGetAnaglyphColorMask ()
 
virtual void GetAnaglyphColorMask (int data[2])
 
virtual void SetSwapBuffers (int)
 
virtual int GetSwapBuffers ()
 
virtual void SwapBuffersOn ()
 
virtual void SwapBuffersOff ()
 
virtual int SetPixelData (int x, int y, int x2, int y2, unsigned char *data, int front)=0
 
virtual int SetPixelData (int x, int y, int x2, int y2, vtkUnsignedCharArray *data, int front)=0
 
virtual floatGetRGBAPixelData (int x, int y, int x2, int y2, int front)=0
 
virtual int GetRGBAPixelData (int x, int y, int x2, int y2, int front, vtkFloatArray *data)=0
 
virtual int SetRGBAPixelData (int x, int y, int x2, int y2, float *, int front, int blend=0)=0
 
virtual int SetRGBAPixelData (int, int, int, int, vtkFloatArray *, int, int blend=0)=0
 
virtual void ReleaseRGBAPixelData (float *data)=0
 
virtual unsigned char * GetRGBACharPixelData (int x, int y, int x2, int y2, int front)=0
 
virtual int GetRGBACharPixelData (int x, int y, int x2, int y2, int front, vtkUnsignedCharArray *data)=0
 
virtual int SetRGBACharPixelData (int x, int y, int x2, int y2, unsigned char *data, int front, int blend=0)=0
 
virtual int SetRGBACharPixelData (int x, int y, int x2, int y2, vtkUnsignedCharArray *data, int front, int blend=0)=0
 
virtual floatGetZbufferData (int x, int y, int x2, int y2)=0
 
virtual int GetZbufferData (int x, int y, int x2, int y2, float *z)=0
 
virtual int GetZbufferData (int x, int y, int x2, int y2, vtkFloatArray *z)=0
 
virtual int SetZbufferData (int x, int y, int x2, int y2, float *z)=0
 
virtual int SetZbufferData (int x, int y, int x2, int y2, vtkFloatArray *z)=0
 
float GetZbufferDataAtPoint (int x, int y)
 
virtual int GetAAFrames ()
 
virtual void SetAAFrames (int)
 
virtual int GetFDFrames ()
 
virtual void SetFDFrames (int fdFrames)
 
virtual int GetUseConstantFDOffsets ()
 
virtual void SetUseConstantFDOffsets (int)
 
virtual int GetSubFrames ()
 
virtual void SetSubFrames (int subFrames)
 
virtual int GetNeverRendered ()
 
virtual int GetAbortRender ()
 
virtual void SetAbortRender (int)
 
virtual int GetInAbortCheck ()
 
virtual void SetInAbortCheck (int)
 
virtual int CheckAbortStatus ()
 
virtual void SetDesiredUpdateRate (double)
 
virtual double GetDesiredUpdateRate ()
 
virtual int GetNumberOfLayers ()
 
virtual void SetNumberOfLayers (int)
 
virtual vtkRenderWindowInteractorGetInteractor ()
 
virtual void SetDisplayId (void *)=0
 
virtual void SetWindowId (void *)=0
 
virtual void SetNextWindowId (void *)=0
 
virtual void SetParentId (void *)=0
 
virtual void * GetGenericDisplayId ()=0
 
virtual void * GetGenericWindowId ()=0
 
virtual void * GetGenericParentId ()=0
 
virtual void * GetGenericContext ()=0
 
virtual void * GetGenericDrawable ()=0
 
virtual void SetWindowInfo (char *)=0
 
virtual void SetNextWindowInfo (char *)=0
 
virtual void SetParentInfo (char *)=0
 
virtual vtkPainterDeviceAdapterGetPainterDeviceAdapter ()
 
virtual void SetMultiSamples (int)
 
virtual int GetMultiSamples ()
 
virtual void SetStencilCapable (int)
 
virtual int GetStencilCapable ()
 
virtual void StencilCapableOn ()
 
virtual void StencilCapableOff ()
 
- Public Member Functions inherited from vtkWindow
vtkWindowNewInstance () const
 
intGetActualSize ()
 
virtual intGetScreenSize ()=0
 
virtual bool DetectDPI ()
 
virtual intGetPosition ()
 
virtual void SetPosition (int, int)
 
virtual void SetPosition (int a[2])
 
virtual intGetSize ()
 
virtual void SetSize (int, int)
 
virtual void SetSize (int a[2])
 
virtual void SetMapped (int)
 
virtual int GetMapped ()
 
virtual void MappedOn ()
 
virtual void MappedOff ()
 
virtual void SetErase (int)
 
virtual int GetErase ()
 
virtual void EraseOn ()
 
virtual void EraseOff ()
 
virtual void SetDoubleBuffer (int)
 
virtual int GetDoubleBuffer ()
 
virtual void DoubleBufferOn ()
 
virtual void DoubleBufferOff ()
 
virtual char * GetWindowName ()
 
virtual void SetWindowName (const char *)
 
virtual unsigned char * GetPixelData (int x, int y, int x2, int y2, int front)=0
 
virtual int GetPixelData (int x, int y, int x2, int y2, int front, vtkUnsignedCharArray *data)=0
 
virtual int GetDPI ()
 
virtual void SetDPI (int)
 
virtual void SetOffScreenRendering (int)
 
virtual int GetOffScreenRendering ()
 
virtual void OffScreenRenderingOn ()
 
virtual void OffScreenRenderingOff ()
 
virtual void SetTileScale (int, int)
 
void SetTileScale (int[2])
 
virtual intGetTileScale ()
 
virtual void GetTileScale (int &, int &)
 
virtual void GetTileScale (int[2])
 
void SetTileScale (int s)
 
virtual void SetTileViewport (double, double, double, double)
 
virtual void SetTileViewport (double[4])
 
virtual doubleGetTileViewport ()
 
virtual void GetTileViewport (double &, double &, double &, double &)
 
virtual void GetTileViewport (double[4])
 
- Public Member Functions inherited from vtkObject
vtkObjectNewInstance () const
 
virtual void DebugOn ()
 
virtual void DebugOff ()
 
bool GetDebug ()
 
void SetDebug (bool debugFlag)
 
virtual void Modified ()
 
virtual unsigned long GetMTime ()
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 
vtkCommandGetCommand (unsigned long tag)
 
void RemoveObserver (vtkCommand *)
 
void RemoveObservers (unsigned long event, vtkCommand *)
 
void RemoveObservers (const char *event, vtkCommand *)
 
int HasObserver (unsigned long event, vtkCommand *)
 
int HasObserver (const char *event, vtkCommand *)
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
int HasObserver (unsigned long event)
 
int HasObserver (const char *event)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 
int InvokeEvent (unsigned long event, void *callData)
 
int InvokeEvent (const char *event, void *callData)
 
int InvokeEvent (unsigned long event)
 
int InvokeEvent (const char *event)
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 
virtual void Delete ()
 
virtual void FastDelete ()
 
void Print (ostream &os)
 
virtual void Register (vtkObjectBase *o)
 
void SetReferenceCount (int)
 
void PrintRevisions (ostream &)
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 
int GetReferenceCount ()
 

Static Public Member Functions

static int IsTypeOf (const char *type)
 
static vtkRenderWindowSafeDownCast (vtkObjectBase *o)
 
static vtkRenderWindowNew ()
 
static const char * GetRenderLibrary ()
 
- Static Public Member Functions inherited from vtkWindow
static int IsTypeOf (const char *type)
 
static vtkWindowSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkObject
static int IsTypeOf (const char *type)
 
static vtkObjectSafeDownCast (vtkObjectBase *o)
 
static vtkObjectNew ()
 
static void BreakOnError ()
 
static void SetGlobalWarningDisplay (int val)
 
static void GlobalWarningDisplayOn ()
 
static void GlobalWarningDisplayOff ()
 
static int GetGlobalWarningDisplay ()
 
- Static Public Member Functions inherited from vtkObjectBase
static int IsTypeOf (const char *name)
 
static vtkObjectBaseNew ()
 

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 
 vtkRenderWindow ()
 
 ~vtkRenderWindow ()
 
virtual void DoStereoRender ()
 
virtual void DoFDRender ()
 
virtual void DoAARender ()
 
- Protected Member Functions inherited from vtkWindow
 vtkWindow ()
 
 ~vtkWindow ()
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
virtual ~vtkObject ()
 
virtual void RegisterInternal (vtkObjectBase *, int check)
 
virtual void UnRegisterInternal (vtkObjectBase *, int check)
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=NULL)
 
void InternalReleaseFocus ()
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
virtual void CollectRevisions (ostream &)
 
virtual void ReportReferences (vtkGarbageCollector *)
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

vtkPainterDeviceAdapterPainterDeviceAdapter
 
vtkRendererCollectionRenderers
 
int Borders
 
int FullScreen
 
int OldScreen [5]
 
int PointSmoothing
 
int LineSmoothing
 
int PolygonSmoothing
 
int StereoRender
 
int StereoType
 
int StereoStatus
 
int StereoCapableWindow
 
int AlphaBitPlanes
 
vtkRenderWindowInteractorInteractor
 
unsigned char * StereoBuffer
 
floatAccumulationBuffer
 
unsigned int AccumulationBufferSize
 
int AAFrames
 
int FDFrames
 
int UseConstantFDOffsets
 
doubleConstantFDOffsets [2]
 
int SubFrames
 
int CurrentSubFrame
 
unsigned char * ResultFrame
 
int SwapBuffers
 
double DesiredUpdateRate
 
int AbortRender
 
int InAbortCheck
 
int InRender
 
int NeverRendered
 
int NumberOfLayers
 
int CurrentCursor
 
int IsPicking
 
float AnaglyphColorSaturation
 
int AnaglyphColorMask [2]
 
int MultiSamples
 
int StencilCapable
 
int CapturingGL2PSSpecialProps
 
double AbortCheckTime
 
- Protected Attributes inherited from vtkWindow
int OffScreenRendering
 
char * WindowName
 
int Size [2]
 
int Position [2]
 
int Mapped
 
int Erase
 
int DoubleBuffer
 
int DPI
 
double TileViewport [4]
 
int TileSize [2]
 
int TileScale [2]
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
- Protected Attributes inherited from vtkObjectBase
vtkAtomicInt32 ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 

Detailed Description

create a window for renderers to draw into

vtkRenderWindow is an abstract object to specify the behavior of a rendering window. A rendering window is a window in a graphical user interface where renderers draw their images. Methods are provided to synchronize the rendering process, set window size, and control double buffering. The window also allows rendering in stereo. The interlaced render stereo type is for output to a VRex stereo projector. All of the odd horizontal lines are from the left eye, and the even lines are from the right eye. The user has to make the render window aligned with the VRex projector, or the eye will be swapped.

Warning
In VTK versions 4 and later, the vtkWindowToImageFilter class is part of the canonical way to output an image of a window to a file (replacing the obsolete SaveImageAsPPM method for vtkRenderWindows that existed in 3.2 and earlier). Connect one of these filters to the output of the window, and filter's output to a writer such as vtkPNGWriter.
See also
vtkRenderer vtkRenderWindowInteractor vtkWindowToImageFilter
Events:
vtkCommand::StartEvent vtkCommand::EndEvent vtkCommand::AbortCheckEvent
Examples:
vtkRenderWindow (Examples)
Tests:
vtkRenderWindow (Tests)

Definition at line 88 of file vtkRenderWindow.h.

Member Typedef Documentation

Definition at line 91 of file vtkRenderWindow.h.

Constructor & Destructor Documentation

vtkRenderWindow::vtkRenderWindow ( )
protected
vtkRenderWindow::~vtkRenderWindow ( )
protected

Member Function Documentation

static int vtkRenderWindow::IsTypeOf ( const char *  type)
static
virtual int vtkRenderWindow::IsA ( const char *  name)
virtual
static vtkRenderWindow* vtkRenderWindow::SafeDownCast ( vtkObjectBase o)
static
virtual vtkObjectBase* vtkRenderWindow::NewInstanceInternal ( ) const
protectedvirtual
vtkRenderWindow* vtkRenderWindow::NewInstance ( ) const
void vtkRenderWindow::PrintSelf ( ostream &  os,
vtkIndent  indent 
)
virtual

Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkWindow.

Reimplemented in vtkCarbonRenderWindow, vtkExternalOpenGLRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkXOpenGLRenderWindow, vtkOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkGenericOpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkOpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkGenericOpenGLRenderWindow, vtkWin32OpenGLRenderWindow, and vtkEGLRenderWindow.

static vtkRenderWindow* vtkRenderWindow::New ( )
static

Construct an instance of vtkRenderWindow with its screen size set to 300x300, borders turned on, positioned at (0,0), double buffering turned on.

virtual void vtkRenderWindow::AddRenderer ( vtkRenderer )
virtual

Add a renderer to the list of renderers.

void vtkRenderWindow::RemoveRenderer ( vtkRenderer )

Remove a renderer from the list of renderers.

int vtkRenderWindow::HasRenderer ( vtkRenderer )

Query if a renderer is in the list of renderers.

static const char* vtkRenderWindow::GetRenderLibrary ( )
static

What rendering library has the user requested

vtkRendererCollection* vtkRenderWindow::GetRenderers ( )
inline

Return the collection of renderers in the render window.

Definition at line 112 of file vtkRenderWindow.h.

void vtkRenderWindow::CaptureGL2PSSpecialProps ( vtkCollection specialProps)

The GL2PS exporter must handle certain props in a special way (e.g. text). This method performs a render and captures all "GL2PS-special" props in the specified collection. The collection will contain a vtkPropCollection for each vtkRenderer in this->GetRenderers(), each containing the special props rendered by the corresponding renderer.

virtual int vtkRenderWindow::GetCapturingGL2PSSpecialProps ( )
virtual

Returns true if the render process is capturing text actors.

virtual void vtkRenderWindow::Render ( )
virtual

Ask each renderer owned by this RenderWindow to render its image and synchronize this process.

Implements vtkWindow.

Reimplemented in vtkXOpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkEGLRenderWindow, vtkExternalOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual void vtkRenderWindow::Start ( )
pure virtual
virtual void vtkRenderWindow::Finalize ( )
pure virtual
virtual void vtkRenderWindow::Frame ( )
pure virtual
virtual void vtkRenderWindow::WaitForCompletion ( )
pure virtual

Block the thread until the actual rendering is finished(). Useful for measurement only.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual void vtkRenderWindow::CopyResultFrame ( )
virtual

Performed at the end of the rendering process to generate image. This is typically done right before swapping buffers.

virtual vtkRenderWindowInteractor* vtkRenderWindow::MakeRenderWindowInteractor ( )
virtual

Create an interactor to control renderers in this window. We need to know what type of interactor to create, because we might be in X Windows or MS Windows.

virtual void vtkRenderWindow::HideCursor ( )
pure virtual

Hide or Show the mouse cursor, it is nice to be able to hide the default cursor if you want VTK to display a 3D cursor instead. Set cursor position in window (note that (0,0) is the lower left corner).

Implemented in vtkCarbonRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkXOpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkEGLRenderWindow, vtkGenericOpenGLRenderWindow, and vtkGenericOpenGLRenderWindow.

virtual void vtkRenderWindow::ShowCursor ( )
pure virtual

Hide or Show the mouse cursor, it is nice to be able to hide the default cursor if you want VTK to display a 3D cursor instead. Set cursor position in window (note that (0,0) is the lower left corner).

Implemented in vtkCarbonRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkXOpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkEGLRenderWindow, vtkGenericOpenGLRenderWindow, and vtkGenericOpenGLRenderWindow.

virtual void vtkRenderWindow::SetCursorPosition ( int  ,
int   
)
inlinevirtual

Hide or Show the mouse cursor, it is nice to be able to hide the default cursor if you want VTK to display a 3D cursor instead. Set cursor position in window (note that (0,0) is the lower left corner).

Reimplemented in vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkWin32OpenGLRenderWindow, and vtkWin32OpenGLRenderWindow.

Definition at line 159 of file vtkRenderWindow.h.

virtual void vtkRenderWindow::SetCurrentCursor ( int  )
virtual
virtual int vtkRenderWindow::GetCurrentCursor ( )
virtual

Change the shape of the cursor.

virtual void vtkRenderWindow::SetFullScreen ( int  )
pure virtual
virtual int vtkRenderWindow::GetFullScreen ( )
virtual

Turn on/off rendering full screen window size.

virtual void vtkRenderWindow::FullScreenOn ( )
virtual

Turn on/off rendering full screen window size.

virtual void vtkRenderWindow::FullScreenOff ( )
virtual

Turn on/off rendering full screen window size.

virtual void vtkRenderWindow::SetBorders ( int  )
virtual

Turn on/off window manager borders. Typically, you shouldn't turn the borders off, because that bypasses the window manager and can cause undesirable behavior.

virtual int vtkRenderWindow::GetBorders ( )
virtual

Turn on/off window manager borders. Typically, you shouldn't turn the borders off, because that bypasses the window manager and can cause undesirable behavior.

virtual void vtkRenderWindow::BordersOn ( )
virtual

Turn on/off window manager borders. Typically, you shouldn't turn the borders off, because that bypasses the window manager and can cause undesirable behavior.

virtual void vtkRenderWindow::BordersOff ( )
virtual

Turn on/off window manager borders. Typically, you shouldn't turn the borders off, because that bypasses the window manager and can cause undesirable behavior.

virtual int vtkRenderWindow::GetStereoCapableWindow ( )
virtual

Prescribe that the window be created in a stereo-capable mode. This method must be called before the window is realized. Default is off.

virtual void vtkRenderWindow::StereoCapableWindowOn ( )
virtual

Prescribe that the window be created in a stereo-capable mode. This method must be called before the window is realized. Default is off.

virtual void vtkRenderWindow::StereoCapableWindowOff ( )
virtual

Prescribe that the window be created in a stereo-capable mode. This method must be called before the window is realized. Default is off.

virtual void vtkRenderWindow::SetStereoCapableWindow ( int  capable)
virtual

Prescribe that the window be created in a stereo-capable mode. This method must be called before the window is realized. Default is off.

Reimplemented in vtkCarbonRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkWin32OpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkOSOpenGLRenderWindow, and vtkEGLRenderWindow.

virtual int vtkRenderWindow::GetStereoRender ( )
virtual

Turn on/off stereo rendering.

void vtkRenderWindow::SetStereoRender ( int  stereo)

Turn on/off stereo rendering.

virtual void vtkRenderWindow::StereoRenderOn ( )
virtual

Turn on/off stereo rendering.

virtual void vtkRenderWindow::StereoRenderOff ( )
virtual

Turn on/off stereo rendering.

virtual void vtkRenderWindow::SetAlphaBitPlanes ( int  )
virtual

Turn on/off the use of alpha bitplanes.

virtual int vtkRenderWindow::GetAlphaBitPlanes ( )
virtual

Turn on/off the use of alpha bitplanes.

virtual void vtkRenderWindow::AlphaBitPlanesOn ( )
virtual

Turn on/off the use of alpha bitplanes.

virtual void vtkRenderWindow::AlphaBitPlanesOff ( )
virtual

Turn on/off the use of alpha bitplanes.

virtual void vtkRenderWindow::SetPointSmoothing ( int  )
virtual

Turn on/off point smoothing. Default is off. This must be applied before the first Render.

virtual int vtkRenderWindow::GetPointSmoothing ( )
virtual

Turn on/off point smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::PointSmoothingOn ( )
virtual

Turn on/off point smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::PointSmoothingOff ( )
virtual

Turn on/off point smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::SetLineSmoothing ( int  )
virtual

Turn on/off line smoothing. Default is off. This must be applied before the first Render.

virtual int vtkRenderWindow::GetLineSmoothing ( )
virtual

Turn on/off line smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::LineSmoothingOn ( )
virtual

Turn on/off line smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::LineSmoothingOff ( )
virtual

Turn on/off line smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::SetPolygonSmoothing ( int  )
virtual

Turn on/off polygon smoothing. Default is off. This must be applied before the first Render.

virtual int vtkRenderWindow::GetPolygonSmoothing ( )
virtual

Turn on/off polygon smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::PolygonSmoothingOn ( )
virtual

Turn on/off polygon smoothing. Default is off. This must be applied before the first Render.

virtual void vtkRenderWindow::PolygonSmoothingOff ( )
virtual

Turn on/off polygon smoothing. Default is off. This must be applied before the first Render.

virtual int vtkRenderWindow::GetStereoType ( )
virtual

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

virtual void vtkRenderWindow::SetStereoType ( int  )
virtual

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

void vtkRenderWindow::SetStereoTypeToCrystalEyes ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 248 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToRedBlue ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 250 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToInterlaced ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 252 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToLeft ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 254 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToRight ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 256 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToDresden ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 258 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToAnaglyph ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 260 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToCheckerboard ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 262 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToSplitViewportHorizontal ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 264 of file vtkRenderWindow.h.

void vtkRenderWindow::SetStereoTypeToFake ( )
inline

Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat) maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. Fake simply causes the window to render twice without actually swapping the camera from left eye to right eye. This is useful in certain applications that want to emulate the rendering passes without actually rendering in stereo mode.

Definition at line 266 of file vtkRenderWindow.h.

const char* vtkRenderWindow::GetStereoTypeAsString ( )
virtual void vtkRenderWindow::StereoUpdate ( )
virtual

Update the system, if needed, due to stereo rendering. For some stereo methods, subclasses might need to switch some hardware settings here.

Reimplemented in vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual void vtkRenderWindow::StereoMidpoint ( )
virtual

Intermediate method performs operations required between the rendering of the left and right eye.

virtual void vtkRenderWindow::StereoRenderComplete ( )
virtual

Handles work required once both views have been rendered when using stereo rendering.

virtual void vtkRenderWindow::SetAnaglyphColorSaturation ( float  )
virtual

Set/get the anaglyph color saturation factor. This number ranges from 0.0 to 1.0: 0.0 means that no color from the original object is maintained, 1.0 means all of the color is maintained. The default value is 0.65. Too much saturation can produce uncomfortable 3D viewing because anaglyphs also use color to encode 3D.

virtual float vtkRenderWindow::GetAnaglyphColorSaturation ( )
virtual

Set/get the anaglyph color saturation factor. This number ranges from 0.0 to 1.0: 0.0 means that no color from the original object is maintained, 1.0 means all of the color is maintained. The default value is 0.65. Too much saturation can produce uncomfortable 3D viewing because anaglyphs also use color to encode 3D.

virtual void vtkRenderWindow::SetAnaglyphColorMask ( int  ,
int   
)
virtual

Set/get the anaglyph color mask values. These two numbers are bits mask that control which color channels of the original stereo images are used to produce the final anaglyph image. The first value is the color mask for the left view, the second the mask for the right view. If a bit in the mask is on for a particular color for a view, that color is passed on to the final view; if it is not set, that channel for that view is ignored. The bits are arranged as r, g, and b, so r = 4, g = 2, and b = 1. By default, the first value (the left view) is set to 4, and the second value is set to 3. That means that the red output channel comes from the left view, and the green and blue values come from the right view.

void vtkRenderWindow::SetAnaglyphColorMask ( int  [2])

Set/get the anaglyph color mask values. These two numbers are bits mask that control which color channels of the original stereo images are used to produce the final anaglyph image. The first value is the color mask for the left view, the second the mask for the right view. If a bit in the mask is on for a particular color for a view, that color is passed on to the final view; if it is not set, that channel for that view is ignored. The bits are arranged as r, g, and b, so r = 4, g = 2, and b = 1. By default, the first value (the left view) is set to 4, and the second value is set to 3. That means that the red output channel comes from the left view, and the green and blue values come from the right view.

virtual int* vtkRenderWindow::GetAnaglyphColorMask ( )
virtual

Set/get the anaglyph color mask values. These two numbers are bits mask that control which color channels of the original stereo images are used to produce the final anaglyph image. The first value is the color mask for the left view, the second the mask for the right view. If a bit in the mask is on for a particular color for a view, that color is passed on to the final view; if it is not set, that channel for that view is ignored. The bits are arranged as r, g, and b, so r = 4, g = 2, and b = 1. By default, the first value (the left view) is set to 4, and the second value is set to 3. That means that the red output channel comes from the left view, and the green and blue values come from the right view.

virtual void vtkRenderWindow::GetAnaglyphColorMask ( int  data[2])
virtual

Set/get the anaglyph color mask values. These two numbers are bits mask that control which color channels of the original stereo images are used to produce the final anaglyph image. The first value is the color mask for the left view, the second the mask for the right view. If a bit in the mask is on for a particular color for a view, that color is passed on to the final view; if it is not set, that channel for that view is ignored. The bits are arranged as r, g, and b, so r = 4, g = 2, and b = 1. By default, the first value (the left view) is set to 4, and the second value is set to 3. That means that the red output channel comes from the left view, and the green and blue values come from the right view.

virtual void vtkRenderWindow::WindowRemap ( )
pure virtual

Remap the rendering window. This probably only works on UNIX right now. It is useful for changing properties that can't normally be changed once the window is up.

Implemented in vtkOSOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkGenericOpenGLRenderWindow, vtkGenericOpenGLRenderWindow, vtkCarbonRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkXOpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkWin32OpenGLRenderWindow, and vtkEGLRenderWindow.

virtual void vtkRenderWindow::SetSwapBuffers ( int  )
virtual

Turn on/off buffer swapping between images.

virtual int vtkRenderWindow::GetSwapBuffers ( )
virtual

Turn on/off buffer swapping between images.

virtual void vtkRenderWindow::SwapBuffersOn ( )
virtual

Turn on/off buffer swapping between images.

virtual void vtkRenderWindow::SwapBuffersOff ( )
virtual

Turn on/off buffer swapping between images.

virtual int vtkRenderWindow::SetPixelData ( int  x,
int  y,
int  x2,
int  y2,
unsigned char *  data,
int  front 
)
pure virtual

Set/Get the pixel data of an image, transmitted as RGBRGBRGB. The front argument indicates if the front buffer should be used or the back buffer. It is the caller's responsibility to delete the resulting array. It is very important to realize that the memory in this array is organized from the bottom of the window to the top. The origin of the screen is in the lower left corner. The y axis increases as you go up the screen. So the storage of pixels is from left to right and from bottom to top. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::SetPixelData ( int  x,
int  y,
int  x2,
int  y2,
vtkUnsignedCharArray data,
int  front 
)
pure virtual

Set/Get the pixel data of an image, transmitted as RGBRGBRGB. The front argument indicates if the front buffer should be used or the back buffer. It is the caller's responsibility to delete the resulting array. It is very important to realize that the memory in this array is organized from the bottom of the window to the top. The origin of the screen is in the lower left corner. The y axis increases as you go up the screen. So the storage of pixels is from left to right and from bottom to top. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual float* vtkRenderWindow::GetRGBAPixelData ( int  x,
int  y,
int  x2,
int  y2,
int  front 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::GetRGBAPixelData ( int  x,
int  y,
int  x2,
int  y2,
int  front,
vtkFloatArray data 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::SetRGBAPixelData ( int  x,
int  y,
int  x2,
int  y2,
float ,
int  front,
int  blend = 0 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::SetRGBAPixelData ( int  ,
int  ,
int  ,
int  ,
vtkFloatArray ,
int  ,
int  blend = 0 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual void vtkRenderWindow::ReleaseRGBAPixelData ( float data)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual unsigned char* vtkRenderWindow::GetRGBACharPixelData ( int  x,
int  y,
int  x2,
int  y2,
int  front 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::GetRGBACharPixelData ( int  x,
int  y,
int  x2,
int  y2,
int  front,
vtkUnsignedCharArray data 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::SetRGBACharPixelData ( int  x,
int  y,
int  x2,
int  y2,
unsigned char *  data,
int  front,
int  blend = 0 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::SetRGBACharPixelData ( int  x,
int  y,
int  x2,
int  y2,
vtkUnsignedCharArray data,
int  front,
int  blend = 0 
)
pure virtual

Same as Get/SetPixelData except that the image also contains an alpha component. The image is transmitted as RGBARGBARGBA... each of which is a float value. The "blend" parameter controls whether the SetRGBAPixelData method blends the data with the previous contents of the frame buffer or completely replaces the frame buffer data.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual float* vtkRenderWindow::GetZbufferData ( int  x,
int  y,
int  x2,
int  y2 
)
pure virtual

Set/Get the zbuffer data from the frame buffer. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::GetZbufferData ( int  x,
int  y,
int  x2,
int  y2,
float z 
)
pure virtual

Set/Get the zbuffer data from the frame buffer. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::GetZbufferData ( int  x,
int  y,
int  x2,
int  y2,
vtkFloatArray z 
)
pure virtual

Set/Get the zbuffer data from the frame buffer. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::SetZbufferData ( int  x,
int  y,
int  x2,
int  y2,
float z 
)
pure virtual

Set/Get the zbuffer data from the frame buffer. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::SetZbufferData ( int  x,
int  y,
int  x2,
int  y2,
vtkFloatArray z 
)
pure virtual

Set/Get the zbuffer data from the frame buffer. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

float vtkRenderWindow::GetZbufferDataAtPoint ( int  x,
int  y 
)
inline

Set/Get the zbuffer data from the frame buffer. (x,y) is any corner of the rectangle. (x2,y2) is its opposite corner on the diagonal.

Definition at line 375 of file vtkRenderWindow.h.

virtual int vtkRenderWindow::GetAAFrames ( )
virtual

Set the number of frames for doing antialiasing. The default is zero. Typically five or six will yield reasonable results without taking too long.

virtual void vtkRenderWindow::SetAAFrames ( int  )
virtual

Set the number of frames for doing antialiasing. The default is zero. Typically five or six will yield reasonable results without taking too long.

virtual int vtkRenderWindow::GetFDFrames ( )
virtual

Set the number of frames for doing focal depth. The default is zero. Depending on how your scene is organized you can get away with as few as four frames for focal depth or you might need thirty. One thing to note is that if you are using focal depth frames, then you will not need many (if any) frames for antialiasing.

virtual void vtkRenderWindow::SetFDFrames ( int  fdFrames)
virtual

Set the number of frames for doing focal depth. The default is zero. Depending on how your scene is organized you can get away with as few as four frames for focal depth or you might need thirty. One thing to note is that if you are using focal depth frames, then you will not need many (if any) frames for antialiasing.

virtual int vtkRenderWindow::GetUseConstantFDOffsets ( )
virtual

Turn on/off using constant offsets for focal depth rendering. The default is off. When constants offsets are used, re-rendering the same scene using the same camera yields the same image; otherwise offsets are random numbers at each rendering that yields slightly different images.

virtual void vtkRenderWindow::SetUseConstantFDOffsets ( int  )
virtual

Turn on/off using constant offsets for focal depth rendering. The default is off. When constants offsets are used, re-rendering the same scene using the same camera yields the same image; otherwise offsets are random numbers at each rendering that yields slightly different images.

virtual int vtkRenderWindow::GetSubFrames ( )
virtual

Set the number of sub frames for doing motion blur. The default is zero. Once this is set greater than one, you will no longer see a new frame for every Render(). If you set this to five, you will need to do five Render() invocations before seeing the result. This isn't very impressive unless something is changing between the Renders. Changing this value may reset the current subframe count.

virtual void vtkRenderWindow::SetSubFrames ( int  subFrames)
virtual

Set the number of sub frames for doing motion blur. The default is zero. Once this is set greater than one, you will no longer see a new frame for every Render(). If you set this to five, you will need to do five Render() invocations before seeing the result. This isn't very impressive unless something is changing between the Renders. Changing this value may reset the current subframe count.

virtual int vtkRenderWindow::GetNeverRendered ( )
virtual

This flag is set if the window hasn't rendered since it was created

virtual int vtkRenderWindow::GetAbortRender ( )
virtual

This is a flag that can be set to interrupt a rendering that is in progress.

virtual void vtkRenderWindow::SetAbortRender ( int  )
virtual

This is a flag that can be set to interrupt a rendering that is in progress.

virtual int vtkRenderWindow::GetInAbortCheck ( )
virtual

This is a flag that can be set to interrupt a rendering that is in progress.

virtual void vtkRenderWindow::SetInAbortCheck ( int  )
virtual

This is a flag that can be set to interrupt a rendering that is in progress.

virtual int vtkRenderWindow::CheckAbortStatus ( )
virtual

This is a flag that can be set to interrupt a rendering that is in progress.

virtual int vtkRenderWindow::GetIsPicking ( )
virtual
virtual void vtkRenderWindow::SetIsPicking ( int  )
virtual
virtual void vtkRenderWindow::IsPickingOn ( )
virtual
virtual void vtkRenderWindow::IsPickingOff ( )
virtual
virtual int vtkRenderWindow::GetEventPending ( )
pure virtual

Check to see if a mouse button has been pressed. All other events are ignored by this method. Ideally, you want to abort the render on any event which causes the DesiredUpdateRate to switch from a high-quality rate to a more interactive rate.

Implemented in vtkXOpenGLRenderWindow, vtkCarbonRenderWindow, vtkXOpenGLRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkWin32OpenGLRenderWindow, vtkWin32OpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkEGLRenderWindow, vtkGenericOpenGLRenderWindow, and vtkGenericOpenGLRenderWindow.

virtual int vtkRenderWindow::CheckInRenderStatus ( )
inlinevirtual

Are we rendering at the moment

Definition at line 448 of file vtkRenderWindow.h.

virtual void vtkRenderWindow::ClearInRenderStatus ( )
inlinevirtual

Clear status (after an exception was thrown for example)

Definition at line 451 of file vtkRenderWindow.h.

virtual void vtkRenderWindow::SetDesiredUpdateRate ( double  )
virtual

Set/Get the desired update rate. This is used with the vtkLODActor class. When using level of detail actors you need to specify what update rate you require. The LODActors then will pick the correct resolution to meet your desired update rate in frames per second. A value of zero indicates that they can use all the time they want to.

virtual double vtkRenderWindow::GetDesiredUpdateRate ( )
virtual

Set/Get the desired update rate. This is used with the vtkLODActor class. When using level of detail actors you need to specify what update rate you require. The LODActors then will pick the correct resolution to meet your desired update rate in frames per second. A value of zero indicates that they can use all the time they want to.

virtual int vtkRenderWindow::GetNumberOfLayers ( )
virtual

Get the number of layers for renderers. Each renderer should have its layer set individually. Some algorithms iterate through all layers, so it is not wise to set the number of layers to be exorbitantly large (say bigger than 100).

virtual void vtkRenderWindow::SetNumberOfLayers ( int  )
virtual

Get the number of layers for renderers. Each renderer should have its layer set individually. Some algorithms iterate through all layers, so it is not wise to set the number of layers to be exorbitantly large (say bigger than 100).

virtual vtkRenderWindowInteractor* vtkRenderWindow::GetInteractor ( )
virtual

Get the interactor associated with this render window

void vtkRenderWindow::SetInteractor ( vtkRenderWindowInteractor )

Set the interactor to the render window

virtual void vtkRenderWindow::UnRegister ( vtkObjectBase o)
virtual

This Method detects loops of RenderWindow<->Interactor, so objects are freed properly.

Reimplemented from vtkObjectBase.

virtual void vtkRenderWindow::SetDisplayId ( void *  )
pure virtual
virtual void vtkRenderWindow::SetWindowId ( void *  )
pure virtual
virtual void vtkRenderWindow::SetNextWindowId ( void *  )
pure virtual
virtual void vtkRenderWindow::SetParentId ( void *  )
pure virtual
virtual void* vtkRenderWindow::GetGenericDisplayId ( )
pure virtual
virtual void* vtkRenderWindow::GetGenericWindowId ( )
pure virtual
virtual void* vtkRenderWindow::GetGenericParentId ( )
pure virtual
virtual void* vtkRenderWindow::GetGenericContext ( )
pure virtual
virtual void* vtkRenderWindow::GetGenericDrawable ( )
pure virtual
virtual void vtkRenderWindow::SetWindowInfo ( char *  )
pure virtual
virtual void vtkRenderWindow::SetNextWindowInfo ( char *  )
pure virtual
virtual void vtkRenderWindow::SetParentInfo ( char *  )
pure virtual
virtual bool vtkRenderWindow::InitializeFromCurrentContext ( )
inlinevirtual

Initialize the render window from the information associated with the currently activated OpenGL context.

Reimplemented in vtkXOpenGLRenderWindow, vtkXOpenGLRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkWin32OpenGLRenderWindow, and vtkWin32OpenGLRenderWindow.

Definition at line 502 of file vtkRenderWindow.h.

virtual void vtkRenderWindow::MakeCurrent ( )
pure virtual
virtual bool vtkRenderWindow::IsCurrent ( )
pure virtual
virtual bool vtkRenderWindow::IsDrawable ( )
inlinevirtual

Test if the window has a valid drawable. This is currently only an issue on Mac OS X Cocoa where rendering to an invalid drawable results in all OpenGL calls to fail with "invalid framebuffer operation".

Reimplemented in vtkCocoaRenderWindow, vtkCocoaRenderWindow, and vtkIOSRenderWindow.

Definition at line 516 of file vtkRenderWindow.h.

virtual void vtkRenderWindow::SetForceMakeCurrent ( )
inlinevirtual

If called, allow MakeCurrent() to skip cache-check when called. MakeCurrent() reverts to original behavior of cache-checking on the next render.

Reimplemented in vtkCarbonRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkXOpenGLRenderWindow, vtkOSOpenGLRenderWindow, vtkXOpenGLRenderWindow, and vtkOSOpenGLRenderWindow.

Definition at line 521 of file vtkRenderWindow.h.

virtual const char* vtkRenderWindow::ReportCapabilities ( )
inlinevirtual
virtual int vtkRenderWindow::SupportsOpenGL ( )
inlinevirtual
virtual int vtkRenderWindow::IsDirect ( )
inlinevirtual
virtual int vtkRenderWindow::GetDepthBufferSize ( )
pure virtual

This method should be defined by the subclass. How many bits of precision are there in the zbuffer?

Implemented in vtkCarbonRenderWindow, vtkCocoaRenderWindow, vtkCocoaRenderWindow, vtkIOSRenderWindow, vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual int vtkRenderWindow::GetColorBufferSizes ( int rgba)
pure virtual

Get the size of the color buffer. Returns 0 if not able to determine otherwise sets R G B and A into buffer.

Implemented in vtkOpenGLRenderWindow, and vtkOpenGLRenderWindow.

virtual vtkPainterDeviceAdapter* vtkRenderWindow::GetPainterDeviceAdapter ( )
virtual

Get the vtkPainterDeviceAdapter which can be used to paint on this render window.

virtual void vtkRenderWindow::SetMultiSamples ( int  )
virtual

Set / Get the number of multisamples to use for hardware antialiasing.

Reimplemented in vtkCarbonRenderWindow.

virtual int vtkRenderWindow::GetMultiSamples ( )
virtual

Set / Get the number of multisamples to use for hardware antialiasing.

Reimplemented in vtkCarbonRenderWindow.

virtual void vtkRenderWindow::SetStencilCapable ( int  )
virtual

Set / Get the availability of the stencil buffer.

virtual int vtkRenderWindow::GetStencilCapable ( )
virtual

Set / Get the availability of the stencil buffer.

virtual void vtkRenderWindow::StencilCapableOn ( )
virtual

Set / Get the availability of the stencil buffer.

virtual void vtkRenderWindow::StencilCapableOff ( )
virtual

Set / Get the availability of the stencil buffer.

virtual void vtkRenderWindow::DoStereoRender ( )
protectedvirtual
virtual void vtkRenderWindow::DoFDRender ( )
protectedvirtual
virtual void vtkRenderWindow::DoAARender ( )
protectedvirtual

Member Data Documentation

vtkPainterDeviceAdapter* vtkRenderWindow::PainterDeviceAdapter
protected

Definition at line 568 of file vtkRenderWindow.h.

vtkRendererCollection* vtkRenderWindow::Renderers
protected

Definition at line 569 of file vtkRenderWindow.h.

int vtkRenderWindow::Borders
protected

Definition at line 570 of file vtkRenderWindow.h.

int vtkRenderWindow::FullScreen
protected

Definition at line 571 of file vtkRenderWindow.h.

int vtkRenderWindow::OldScreen[5]
protected

Definition at line 572 of file vtkRenderWindow.h.

int vtkRenderWindow::PointSmoothing
protected

Definition at line 573 of file vtkRenderWindow.h.

int vtkRenderWindow::LineSmoothing
protected

Definition at line 574 of file vtkRenderWindow.h.

int vtkRenderWindow::PolygonSmoothing
protected

Definition at line 575 of file vtkRenderWindow.h.

int vtkRenderWindow::StereoRender
protected

Definition at line 576 of file vtkRenderWindow.h.

int vtkRenderWindow::StereoType
protected

Definition at line 577 of file vtkRenderWindow.h.

int vtkRenderWindow::StereoStatus
protected

Definition at line 578 of file vtkRenderWindow.h.

int vtkRenderWindow::StereoCapableWindow
protected

Definition at line 579 of file vtkRenderWindow.h.

int vtkRenderWindow::AlphaBitPlanes
protected

Definition at line 580 of file vtkRenderWindow.h.

vtkRenderWindowInteractor* vtkRenderWindow::Interactor
protected

Definition at line 581 of file vtkRenderWindow.h.

unsigned char* vtkRenderWindow::StereoBuffer
protected

Definition at line 582 of file vtkRenderWindow.h.

float* vtkRenderWindow::AccumulationBuffer
protected

Definition at line 583 of file vtkRenderWindow.h.

unsigned int vtkRenderWindow::AccumulationBufferSize
protected

Definition at line 584 of file vtkRenderWindow.h.

int vtkRenderWindow::AAFrames
protected

Definition at line 585 of file vtkRenderWindow.h.

int vtkRenderWindow::FDFrames
protected

Definition at line 586 of file vtkRenderWindow.h.

int vtkRenderWindow::UseConstantFDOffsets
protected

Definition at line 587 of file vtkRenderWindow.h.

double* vtkRenderWindow::ConstantFDOffsets[2]
protected

Definition at line 588 of file vtkRenderWindow.h.

int vtkRenderWindow::SubFrames
protected

Definition at line 589 of file vtkRenderWindow.h.

int vtkRenderWindow::CurrentSubFrame
protected

Definition at line 590 of file vtkRenderWindow.h.

unsigned char* vtkRenderWindow::ResultFrame
protected

Definition at line 591 of file vtkRenderWindow.h.

int vtkRenderWindow::SwapBuffers
protected

Definition at line 592 of file vtkRenderWindow.h.

double vtkRenderWindow::DesiredUpdateRate
protected

Definition at line 593 of file vtkRenderWindow.h.

int vtkRenderWindow::AbortRender
protected

Definition at line 594 of file vtkRenderWindow.h.

int vtkRenderWindow::InAbortCheck
protected

Definition at line 595 of file vtkRenderWindow.h.

int vtkRenderWindow::InRender
protected

Definition at line 596 of file vtkRenderWindow.h.

int vtkRenderWindow::NeverRendered
protected

Definition at line 597 of file vtkRenderWindow.h.

int vtkRenderWindow::NumberOfLayers
protected

Definition at line 598 of file vtkRenderWindow.h.

int vtkRenderWindow::CurrentCursor
protected

Definition at line 599 of file vtkRenderWindow.h.

int vtkRenderWindow::IsPicking
protected

Definition at line 600 of file vtkRenderWindow.h.

float vtkRenderWindow::AnaglyphColorSaturation
protected

Definition at line 601 of file vtkRenderWindow.h.

int vtkRenderWindow::AnaglyphColorMask[2]
protected

Definition at line 602 of file vtkRenderWindow.h.

int vtkRenderWindow::MultiSamples
protected

Definition at line 603 of file vtkRenderWindow.h.

int vtkRenderWindow::StencilCapable
protected

Definition at line 604 of file vtkRenderWindow.h.

int vtkRenderWindow::CapturingGL2PSSpecialProps
protected

Definition at line 605 of file vtkRenderWindow.h.

double vtkRenderWindow::AbortCheckTime
protected

The universal time since the last abort check occurred.

Definition at line 608 of file vtkRenderWindow.h.


The documentation for this class was generated from the following file: