VTK  9.4.20250114
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
vtkStreamingTessellator Class Reference

An algorithm that refines an initial simplicial tessellation using edge subdivision. More...

#include <vtkStreamingTessellator.h>

Inheritance diagram for vtkStreamingTessellator:
[legend]
Collaboration diagram for vtkStreamingTessellator:
[legend]

Public Types

enum  { MaxFieldSize = 18 }
 
typedef vtkObject Superclass
 
typedef void(* VertexProcessorFunction) (const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)
 
typedef void(* EdgeProcessorFunction) (const double *, const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)
 
typedef void(* TriangleProcessorFunction) (const double *, const double *, const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)
 
typedef void(* TetrahedronProcessorFunction) (const double *, const double *, const double *, const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)
 

Public Member Functions

virtual vtkTypeBool IsA (const char *type)
 Return 1 if this class is the same type of (or a subclass of) the named class.
 
vtkStreamingTessellatorNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses.
 
virtual const vtkEdgeSubdivisionCriterionGetSubdivisionAlgorithm () const
 
virtual void SetTetrahedronCallback (TetrahedronProcessorFunction)
 Get/Set the function called for each output tetrahedron (3-facet).
 
virtual TetrahedronProcessorFunction GetTetrahedronCallback () const
 Get/Set the function called for each output tetrahedron (3-facet).
 
virtual void SetTriangleCallback (TriangleProcessorFunction)
 Get/Set the function called for each output triangle (2-facet).
 
virtual TriangleProcessorFunction GetTriangleCallback () const
 Get/Set the function called for each output triangle (2-facet).
 
virtual void SetEdgeCallback (EdgeProcessorFunction)
 Get/Set the function called for each output line segment (1-facet).
 
virtual EdgeProcessorFunction GetEdgeCallback () const
 Get/Set the function called for each output line segment (1-facet).
 
virtual void SetVertexCallback (VertexProcessorFunction)
 Get/Set the function called for each output line segment (1-facet).
 
virtual VertexProcessorFunction GetVertexCallback () const
 Get/Set the function called for each output line segment (1-facet).
 
virtual void SetPrivateData (void *Private)
 Get/Set a void pointer passed to the triangle and edge output functions.
 
virtual void * GetPrivateData () const
 Get/Set a void pointer passed to the triangle and edge output functions.
 
virtual void SetConstPrivateData (const void *ConstPrivate)
 Get/Set a constant void pointer passed to the simplex output functions.
 
virtual const void * GetConstPrivateData () const
 Get/Set a constant void pointer passed to the simplex output functions.
 
virtual void SetSubdivisionAlgorithm (vtkEdgeSubdivisionCriterion *)
 Get/Set the algorithm used to determine whether an edge should be subdivided or left as-is.
 
virtual vtkEdgeSubdivisionCriterionGetSubdivisionAlgorithm ()
 Get/Set the algorithm used to determine whether an edge should be subdivided or left as-is.
 
virtual void SetEmbeddingDimension (int k, int d)
 Get/Set the number of parameter-space coordinates associated with each input and output point.
 
int GetEmbeddingDimension (int k) const
 Get/Set the number of parameter-space coordinates associated with each input and output point.
 
virtual void SetFieldSize (int k, int s)
 Get/Set the number of field value coordinates associated with each input and output point.
 
int GetFieldSize (int k) const
 Get/Set the number of field value coordinates associated with each input and output point.
 
virtual void SetMaximumNumberOfSubdivisions (int num_subdiv_in)
 Get/Set the maximum number of subdivisions that may occur.
 
int GetMaximumNumberOfSubdivisions ()
 Get/Set the maximum number of subdivisions that may occur.
 
void AdaptivelySample3FacetLinear (double *v0, double *v1, double *v2, double *v3) const
 This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.
 
void AdaptivelySample2FacetLinear (double *v0, double *v1, double *v2) const
 This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.
 
void AdaptivelySample1FacetLinear (double *v0, double *v1) const
 This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.
 
void AdaptivelySample3Facet (double *v0, double *v1, double *v2, double *v3) const
 This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.
 
void AdaptivelySample2Facet (double *v0, double *v1, double *v2) const
 This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.
 
void AdaptivelySample1Facet (double *v0, double *v1) const
 This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.
 
void AdaptivelySample0Facet (double *v0) const
 This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.
 
void ResetCounts ()
 Reset/access the histogram of subdivision cases encountered.
 
vtkIdType GetCaseCount (int c)
 Reset/access the histogram of subdivision cases encountered.
 
vtkIdType GetSubcaseCount (int casenum, int sub)
 Reset/access the histogram of subdivision cases encountered.
 
- Public Member Functions inherited from vtkObject
 vtkBaseTypeMacro (vtkObject, vtkObjectBase)
 
virtual void DebugOn ()
 Turn debugging output on.
 
virtual void DebugOff ()
 Turn debugging output off.
 
bool GetDebug ()
 Get the value of the debug flag.
 
void SetDebug (bool debugFlag)
 Set the value of the debug flag.
 
virtual void Modified ()
 Update the modification time for this object.
 
virtual vtkMTimeType GetMTime ()
 Return this object's modified time.
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses.
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
vtkTypeBool HasObserver (unsigned long event)
 
vtkTypeBool HasObserver (const char *event)
 
vtkTypeBool InvokeEvent (unsigned long event)
 
vtkTypeBool InvokeEvent (const char *event)
 
std::string GetObjectDescription () const override
 The object description printed in messages and PrintSelf output.
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkCommandGetCommand (unsigned long tag)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObserver (vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Allow user to set the AbortFlagOn() with the return value of the callback method.
 
vtkTypeBool InvokeEvent (unsigned long event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
vtkTypeBool InvokeEvent (const char *event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
virtual void SetObjectName (const std::string &objectName)
 Set/get the name of this object for reporting purposes.
 
virtual std::string GetObjectName () const
 Set/get the name of this object for reporting purposes.
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 Return the class name as a string.
 
virtual std::string GetObjectDescription () const
 The object description printed in messages and PrintSelf output.
 
virtual vtkTypeBool IsA (const char *name)
 Return 1 if this class is the same type of (or a subclass of) the named class.
 
virtual vtkIdType GetNumberOfGenerationsFromBase (const char *name)
 Given the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
virtual void Delete ()
 Delete a VTK object.
 
virtual void FastDelete ()
 Delete a reference to this object.
 
void InitializeObjectBase ()
 
void Print (ostream &os)
 Print an object to an ostream.
 
void Register (vtkObjectBase *o)
 Increase the reference count (mark as used by another object).
 
virtual void UnRegister (vtkObjectBase *o)
 Decrease the reference count (release by another object).
 
int GetReferenceCount ()
 Return the current reference count of this object.
 
void SetReferenceCount (int)
 Sets the reference count.
 
bool GetIsInMemkind () const
 A local state flag that remembers whether this object lives in the normal or extended memory space.
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 
virtual bool UsesGarbageCollector () const
 Indicate whether the class uses vtkGarbageCollector or not.
 

Static Public Member Functions

static vtkTypeBool IsTypeOf (const char *type)
 
static vtkStreamingTessellatorSafeDownCast (vtkObjectBase *o)
 
static vtkStreamingTessellatorNew ()
 
- Static Public Member Functions inherited from vtkObject
static vtkObjectNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void BreakOnError ()
 This method is called when vtkErrorMacro executes.
 
static void SetGlobalWarningDisplay (vtkTypeBool val)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOn ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOff ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static vtkTypeBool GetGlobalWarningDisplay ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
- Static Public Member Functions inherited from vtkObjectBase
static vtkTypeBool IsTypeOf (const char *name)
 Return 1 if this class type is the same type of (or a subclass of) the named class.
 
static vtkIdType GetNumberOfGenerationsFromBaseType (const char *name)
 Given a the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
static vtkObjectBaseNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void SetMemkindDirectory (const char *directoryname)
 The name of a directory, ideally mounted -o dax, to memory map an extended memory space within.
 
static bool GetUsingMemkind ()
 A global state flag that controls whether vtkObjects are constructed in the usual way (the default) or within the extended memory space.
 

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 
 vtkStreamingTessellator ()
 
 ~vtkStreamingTessellator () override
 
void AdaptivelySample3Facet (double *v0, double *v1, double *v2, double *v3, int maxDepth) const
 
void AdaptivelySample2Facet (double *v0, double *v1, double *v2, int maxDepth, int move=7) const
 
void AdaptivelySample1Facet (double *v0, double *v1, int maxDepth) const
 
int BestTets (int *, double **, int, int) const
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
 ~vtkObject () override
 
void RegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=nullptr)
 These methods allow a command to exclusively grab all events.
 
void InternalReleaseFocus ()
 These methods allow a command to exclusively grab all events.
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
virtual void RegisterInternal (vtkObjectBase *, vtkTypeBool check)
 
virtual void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check)
 
virtual void ReportReferences (vtkGarbageCollector *)
 
virtual void ObjectFinalize ()
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

void * PrivateData
 
const void * ConstPrivateData
 
vtkEdgeSubdivisionCriterionAlgorithm
 
VertexProcessorFunction Callback0
 
EdgeProcessorFunction Callback1
 
TriangleProcessorFunction Callback2
 
TetrahedronProcessorFunction Callback3
 
int PointDimension [4]
 PointDimension is the length of each double* array associated with each point passed to a subdivision algorithm: PointDimension[i] = 3 + EmbeddingDimension[i] + FieldSize[i] We store this instead of FieldSize for speed.
 
int EmbeddingDimension [4]
 The parametric dimension of each point passed to the subdivision algorithm.
 
int MaximumNumberOfSubdivisions
 The number of subdivisions allowed.
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
std::string ObjectName
 
- Protected Attributes inherited from vtkObjectBase
std::atomic< int32_t > ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 

Static Protected Attributes

static int EdgeCodesToCaseCodesPlusPermutation [64][2]
 
static vtkIdType PermutationsFromIndex [24][14]
 
static vtkIdType TetrahedralDecompositions []
 

Additional Inherited Members

- Static Protected Member Functions inherited from vtkObjectBase
static vtkMallocingFunction GetCurrentMallocFunction ()
 
static vtkReallocingFunction GetCurrentReallocFunction ()
 
static vtkFreeingFunction GetCurrentFreeFunction ()
 
static vtkFreeingFunction GetAlternateFreeFunction ()
 

Detailed Description

An algorithm that refines an initial simplicial tessellation using edge subdivision.

This class is a simple algorithm that takes a single starting simplex – a tetrahedron, triangle, or line segment – and calls a function you pass it with (possibly many times) tetrahedra, triangles, or lines adaptively sampled from the one you specified. It uses an algorithm you specify to control the level of adaptivity.

This class does not create vtkUnstructuredGrid output because it is intended for use in mappers as well as filters. Instead, it calls the registered function with simplices as they are created.

The subdivision algorithm should change the vertex coordinates (it must change both geometric and, if desired, parametric coordinates) of the midpoint. These coordinates need not be changed unless the EvaluateLocationAndFields() member returns true. The vtkStreamingTessellator itself has no way of creating a more accurate midpoint vertex.

Here's how to use this class:

Warning
Note that the vertices passed to AdaptivelySample3Facet, AdaptivelySample2Facet, or AdaptivelySample1Facet must be at least 6, 5, or 4 entries long, respectively! This is because the <r,s,t>, <r,s>, or <r> parametric coordinates of the vertices are maintained as the facet is subdivided. This information is often required by the subdivision algorithm in order to compute an error metric. You may change the number of parametric coordinates associated with each vertex using vtkStreamingTessellator::SetEmbeddingDimension().
Interpolating Field Values:
If you wish, you may also use vtkStreamingTessellator to interpolate field values at newly created vertices. Interpolated field values are stored just beyond the parametric coordinates associated with a vertex. They will always be double values; it does not make sense to interpolate a boolean or string value and your output and subdivision subroutines may always cast to a float or use floor() to truncate an interpolated value to an integer.
See also
vtkEdgeSubdivisionCriterion
Tests:
vtkStreamingTessellator (Tests)

Definition at line 78 of file vtkStreamingTessellator.h.

Member Typedef Documentation

◆ Superclass

Definition at line 81 of file vtkStreamingTessellator.h.

◆ VertexProcessorFunction

typedef void(* vtkStreamingTessellator::VertexProcessorFunction) (const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)

Definition at line 85 of file vtkStreamingTessellator.h.

◆ EdgeProcessorFunction

typedef void(* vtkStreamingTessellator::EdgeProcessorFunction) (const double *, const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)

Definition at line 87 of file vtkStreamingTessellator.h.

◆ TriangleProcessorFunction

typedef void(* vtkStreamingTessellator::TriangleProcessorFunction) (const double *, const double *, const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)

Definition at line 89 of file vtkStreamingTessellator.h.

◆ TetrahedronProcessorFunction

typedef void(* vtkStreamingTessellator::TetrahedronProcessorFunction) (const double *, const double *, const double *, const double *, vtkEdgeSubdivisionCriterion *, void *, const void *)

Definition at line 91 of file vtkStreamingTessellator.h.

Member Enumeration Documentation

◆ anonymous enum

anonymous enum
Enumerator
MaxFieldSize 

Definition at line 94 of file vtkStreamingTessellator.h.

Constructor & Destructor Documentation

◆ vtkStreamingTessellator()

vtkStreamingTessellator::vtkStreamingTessellator ( )
protected

◆ ~vtkStreamingTessellator()

vtkStreamingTessellator::~vtkStreamingTessellator ( )
overrideprotected

Member Function Documentation

◆ IsTypeOf()

static vtkTypeBool vtkStreamingTessellator::IsTypeOf ( const char *  type)
static

◆ IsA()

virtual vtkTypeBool vtkStreamingTessellator::IsA ( const char *  name)
virtual

Return 1 if this class is the same type of (or a subclass of) the named class.

Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkObjectBase.

◆ SafeDownCast()

static vtkStreamingTessellator * vtkStreamingTessellator::SafeDownCast ( vtkObjectBase o)
static

◆ NewInstanceInternal()

virtual vtkObjectBase * vtkStreamingTessellator::NewInstanceInternal ( ) const
protectedvirtual

◆ NewInstance()

vtkStreamingTessellator * vtkStreamingTessellator::NewInstance ( ) const

◆ New()

static vtkStreamingTessellator * vtkStreamingTessellator::New ( )
static

◆ PrintSelf()

void vtkStreamingTessellator::PrintSelf ( ostream &  os,
vtkIndent  indent 
)
overridevirtual

Methods invoked by print to print information about the object including superclasses.

Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkObject.

◆ SetTetrahedronCallback()

virtual void vtkStreamingTessellator::SetTetrahedronCallback ( TetrahedronProcessorFunction  )
virtual

Get/Set the function called for each output tetrahedron (3-facet).

◆ GetTetrahedronCallback()

virtual TetrahedronProcessorFunction vtkStreamingTessellator::GetTetrahedronCallback ( ) const
virtual

Get/Set the function called for each output tetrahedron (3-facet).

◆ SetTriangleCallback()

virtual void vtkStreamingTessellator::SetTriangleCallback ( TriangleProcessorFunction  )
virtual

Get/Set the function called for each output triangle (2-facet).

◆ GetTriangleCallback()

virtual TriangleProcessorFunction vtkStreamingTessellator::GetTriangleCallback ( ) const
virtual

Get/Set the function called for each output triangle (2-facet).

◆ SetEdgeCallback()

virtual void vtkStreamingTessellator::SetEdgeCallback ( EdgeProcessorFunction  )
virtual

Get/Set the function called for each output line segment (1-facet).

◆ GetEdgeCallback()

virtual EdgeProcessorFunction vtkStreamingTessellator::GetEdgeCallback ( ) const
virtual

Get/Set the function called for each output line segment (1-facet).

◆ SetVertexCallback()

virtual void vtkStreamingTessellator::SetVertexCallback ( VertexProcessorFunction  )
virtual

Get/Set the function called for each output line segment (1-facet).

◆ GetVertexCallback()

virtual VertexProcessorFunction vtkStreamingTessellator::GetVertexCallback ( ) const
virtual

Get/Set the function called for each output line segment (1-facet).

◆ SetPrivateData()

virtual void vtkStreamingTessellator::SetPrivateData ( void *  Private)
virtual

Get/Set a void pointer passed to the triangle and edge output functions.

◆ GetPrivateData()

virtual void * vtkStreamingTessellator::GetPrivateData ( ) const
virtual

Get/Set a void pointer passed to the triangle and edge output functions.

◆ SetConstPrivateData()

virtual void vtkStreamingTessellator::SetConstPrivateData ( const void *  ConstPrivate)
virtual

Get/Set a constant void pointer passed to the simplex output functions.

◆ GetConstPrivateData()

virtual const void * vtkStreamingTessellator::GetConstPrivateData ( ) const
virtual

Get/Set a constant void pointer passed to the simplex output functions.

◆ SetSubdivisionAlgorithm()

virtual void vtkStreamingTessellator::SetSubdivisionAlgorithm ( vtkEdgeSubdivisionCriterion )
virtual

Get/Set the algorithm used to determine whether an edge should be subdivided or left as-is.

This is used once for each call to AdaptivelySample1Facet (which is recursive and will call itself resulting in additional edges to be checked) or three times for each call to AdaptivelySample2Facet (also recursive).

◆ GetSubdivisionAlgorithm() [1/2]

virtual vtkEdgeSubdivisionCriterion * vtkStreamingTessellator::GetSubdivisionAlgorithm ( )
virtual

Get/Set the algorithm used to determine whether an edge should be subdivided or left as-is.

This is used once for each call to AdaptivelySample1Facet (which is recursive and will call itself resulting in additional edges to be checked) or three times for each call to AdaptivelySample2Facet (also recursive).

◆ GetSubdivisionAlgorithm() [2/2]

virtual const vtkEdgeSubdivisionCriterion * vtkStreamingTessellator::GetSubdivisionAlgorithm ( ) const
virtual

◆ SetEmbeddingDimension()

virtual void vtkStreamingTessellator::SetEmbeddingDimension ( int  k,
int  d 
)
virtual

Get/Set the number of parameter-space coordinates associated with each input and output point.

The default is k for k -facets. You may specify a different dimension, d, for each type of k -facet to be processed. For example, SetEmbeddingDimension( 2, 3 ) would associate r, s, and t coordinates with each input and output point generated by AdaptivelySample2Facet but does not say anything about input or output points generated by AdaptivelySample1Facet. Call SetEmbeddingDimension( -1, d ) to specify the same dimension for all possible k values. d may not exceed 8, as that would be plain silly.

◆ GetEmbeddingDimension()

int vtkStreamingTessellator::GetEmbeddingDimension ( int  k) const
inline

Get/Set the number of parameter-space coordinates associated with each input and output point.

The default is k for k -facets. You may specify a different dimension, d, for each type of k -facet to be processed. For example, SetEmbeddingDimension( 2, 3 ) would associate r, s, and t coordinates with each input and output point generated by AdaptivelySample2Facet but does not say anything about input or output points generated by AdaptivelySample1Facet. Call SetEmbeddingDimension( -1, d ) to specify the same dimension for all possible k values. d may not exceed 8, as that would be plain silly.

Definition at line 369 of file vtkStreamingTessellator.h.

◆ SetFieldSize()

virtual void vtkStreamingTessellator::SetFieldSize ( int  k,
int  s 
)
virtual

Get/Set the number of field value coordinates associated with each input and output point.

The default is 0; no field values are interpolated. You may specify a different size, s, for each type of k -facet to be processed. For example, SetFieldSize( 2, 3 ) would associate 3 field value coordinates with each input and output point of an AdaptivelySample2Facet call, but does not say anything about input or output points of AdaptivelySample1Facet. Call SetFieldSize( -1, s ) to specify the same dimension for all possible k values. s may not exceed vtkStreamingTessellator::MaxFieldSize. This is a compile-time constant that defaults to 18, which is large enough for a scalar, vector, tensor, normal, and texture coordinate to be included at each point.

Normally, you will not call SetFieldSize() directly; instead, subclasses of vtkEdgeSubdivisionCriterion, such as vtkShoeMeshSubdivisionAlgorithm, will call it for you.

In any event, setting FieldSize to a non-zero value means you must pass field values to the AdaptivelySamplekFacet routines; For example,

* vtkStreamingTessellator* t = vtkStreamingTessellator::New();
* t->SetFieldSize( 1, 3 );
* t->SetEmbeddingDimension( 1, 1 ); // not really required, this is the default
* double p0[3+1+3] = { x0, y0, z0, r0, fx0, fy0, fz0 };
* double p1[3+1+3] = { x1, y1, z1, r1, fx1, fy1, fz1 };
* t->AdaptivelySample1Facet( p0, p1 );
* 

This would adaptively sample an curve (1-facet) with geometry and a vector field at every output point on the curve.

◆ GetFieldSize()

int vtkStreamingTessellator::GetFieldSize ( int  k) const
inline

Get/Set the number of field value coordinates associated with each input and output point.

The default is 0; no field values are interpolated. You may specify a different size, s, for each type of k -facet to be processed. For example, SetFieldSize( 2, 3 ) would associate 3 field value coordinates with each input and output point of an AdaptivelySample2Facet call, but does not say anything about input or output points of AdaptivelySample1Facet. Call SetFieldSize( -1, s ) to specify the same dimension for all possible k values. s may not exceed vtkStreamingTessellator::MaxFieldSize. This is a compile-time constant that defaults to 18, which is large enough for a scalar, vector, tensor, normal, and texture coordinate to be included at each point.

Normally, you will not call SetFieldSize() directly; instead, subclasses of vtkEdgeSubdivisionCriterion, such as vtkShoeMeshSubdivisionAlgorithm, will call it for you.

In any event, setting FieldSize to a non-zero value means you must pass field values to the AdaptivelySamplekFacet routines; For example,

* vtkStreamingTessellator* t = vtkStreamingTessellator::New();
* t->SetFieldSize( 1, 3 );
* t->SetEmbeddingDimension( 1, 1 ); // not really required, this is the default
* double p0[3+1+3] = { x0, y0, z0, r0, fx0, fy0, fz0 };
* double p1[3+1+3] = { x1, y1, z1, r1, fx1, fy1, fz1 };
* t->AdaptivelySample1Facet( p0, p1 );
* 

This would adaptively sample an curve (1-facet) with geometry and a vector field at every output point on the curve.

Definition at line 376 of file vtkStreamingTessellator.h.

◆ SetMaximumNumberOfSubdivisions()

virtual void vtkStreamingTessellator::SetMaximumNumberOfSubdivisions ( int  num_subdiv_in)
virtual

Get/Set the maximum number of subdivisions that may occur.

◆ GetMaximumNumberOfSubdivisions()

int vtkStreamingTessellator::GetMaximumNumberOfSubdivisions ( )
inline

Get/Set the maximum number of subdivisions that may occur.

Definition at line 383 of file vtkStreamingTessellator.h.

◆ AdaptivelySample3FacetLinear()

void vtkStreamingTessellator::AdaptivelySample3FacetLinear ( double *  v0,
double *  v1,
double *  v2,
double *  v3 
) const

This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.

Use SetMaximumNumberOfSubdivisions to change the maximum recursion depth.

The AdaptivelySample0Facet method is provided as a convenience. Obviously, there is no way to adaptively subdivide a vertex. Instead the input vertex is passed unchanged to the output via a call to the registered VertexProcessorFunction callback.

.SECTION Warning This assumes that you have called SetSubdivisionAlgorithm(), SetEdgeCallback(), SetTriangleCallback(), and SetTetrahedronCallback() with valid values!

◆ AdaptivelySample2FacetLinear()

void vtkStreamingTessellator::AdaptivelySample2FacetLinear ( double *  v0,
double *  v1,
double *  v2 
) const

This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.

Use SetMaximumNumberOfSubdivisions to change the maximum recursion depth.

The AdaptivelySample0Facet method is provided as a convenience. Obviously, there is no way to adaptively subdivide a vertex. Instead the input vertex is passed unchanged to the output via a call to the registered VertexProcessorFunction callback.

.SECTION Warning This assumes that you have called SetSubdivisionAlgorithm(), SetEdgeCallback(), SetTriangleCallback(), and SetTetrahedronCallback() with valid values!

◆ AdaptivelySample1FacetLinear()

void vtkStreamingTessellator::AdaptivelySample1FacetLinear ( double *  v0,
double *  v1 
) const

This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.

Use SetMaximumNumberOfSubdivisions to change the maximum recursion depth.

The AdaptivelySample0Facet method is provided as a convenience. Obviously, there is no way to adaptively subdivide a vertex. Instead the input vertex is passed unchanged to the output via a call to the registered VertexProcessorFunction callback.

.SECTION Warning This assumes that you have called SetSubdivisionAlgorithm(), SetEdgeCallback(), SetTriangleCallback(), and SetTetrahedronCallback() with valid values!

◆ AdaptivelySample3Facet() [1/2]

void vtkStreamingTessellator::AdaptivelySample3Facet ( double *  v0,
double *  v1,
double *  v2,
double *  v3 
) const
inline

This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.

Use SetMaximumNumberOfSubdivisions to change the maximum recursion depth.

The AdaptivelySample0Facet method is provided as a convenience. Obviously, there is no way to adaptively subdivide a vertex. Instead the input vertex is passed unchanged to the output via a call to the registered VertexProcessorFunction callback.

.SECTION Warning This assumes that you have called SetSubdivisionAlgorithm(), SetEdgeCallback(), SetTriangleCallback(), and SetTetrahedronCallback() with valid values!

Definition at line 354 of file vtkStreamingTessellator.h.

◆ AdaptivelySample2Facet() [1/2]

void vtkStreamingTessellator::AdaptivelySample2Facet ( double *  v0,
double *  v1,
double *  v2 
) const
inline

This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.

Use SetMaximumNumberOfSubdivisions to change the maximum recursion depth.

The AdaptivelySample0Facet method is provided as a convenience. Obviously, there is no way to adaptively subdivide a vertex. Instead the input vertex is passed unchanged to the output via a call to the registered VertexProcessorFunction callback.

.SECTION Warning This assumes that you have called SetSubdivisionAlgorithm(), SetEdgeCallback(), SetTriangleCallback(), and SetTetrahedronCallback() with valid values!

Definition at line 359 of file vtkStreamingTessellator.h.

◆ AdaptivelySample1Facet() [1/2]

void vtkStreamingTessellator::AdaptivelySample1Facet ( double *  v0,
double *  v1 
) const
inline

This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.

Use SetMaximumNumberOfSubdivisions to change the maximum recursion depth.

The AdaptivelySample0Facet method is provided as a convenience. Obviously, there is no way to adaptively subdivide a vertex. Instead the input vertex is passed unchanged to the output via a call to the registered VertexProcessorFunction callback.

.SECTION Warning This assumes that you have called SetSubdivisionAlgorithm(), SetEdgeCallback(), SetTriangleCallback(), and SetTetrahedronCallback() with valid values!

Definition at line 364 of file vtkStreamingTessellator.h.

◆ AdaptivelySample0Facet()

void vtkStreamingTessellator::AdaptivelySample0Facet ( double *  v0) const

This will adaptively subdivide the tetrahedron (3-facet), triangle (2-facet), or edge (1-facet) until the subdivision algorithm returns false for every edge or the maximum recursion depth is reached.

Use SetMaximumNumberOfSubdivisions to change the maximum recursion depth.

The AdaptivelySample0Facet method is provided as a convenience. Obviously, there is no way to adaptively subdivide a vertex. Instead the input vertex is passed unchanged to the output via a call to the registered VertexProcessorFunction callback.

.SECTION Warning This assumes that you have called SetSubdivisionAlgorithm(), SetEdgeCallback(), SetTriangleCallback(), and SetTetrahedronCallback() with valid values!

◆ ResetCounts()

void vtkStreamingTessellator::ResetCounts ( )
inline

Reset/access the histogram of subdivision cases encountered.

The histogram may be used to examine coverage during testing as well as characterizing the tessellation algorithm's performance. You should call ResetCounts() once, at the beginning of a stream of tetrahedra. It must be called before AdaptivelySample3Facet() to prevent uninitialized memory reads.

These functions have no effect (and return 0) when PARAVIEW_DEBUG_TESSELLATOR has not been defined. By default, PARAVIEW_DEBUG_TESSELLATOR is not defined, and your code will be fast and efficient. Really!

Definition at line 266 of file vtkStreamingTessellator.h.

◆ GetCaseCount()

vtkIdType vtkStreamingTessellator::GetCaseCount ( int  c)
inline

Reset/access the histogram of subdivision cases encountered.

The histogram may be used to examine coverage during testing as well as characterizing the tessellation algorithm's performance. You should call ResetCounts() once, at the beginning of a stream of tetrahedra. It must be called before AdaptivelySample3Facet() to prevent uninitialized memory reads.

These functions have no effect (and return 0) when PARAVIEW_DEBUG_TESSELLATOR has not been defined. By default, PARAVIEW_DEBUG_TESSELLATOR is not defined, and your code will be fast and efficient. Really!

Definition at line 279 of file vtkStreamingTessellator.h.

◆ GetSubcaseCount()

vtkIdType vtkStreamingTessellator::GetSubcaseCount ( int  casenum,
int  sub 
)
inline

Reset/access the histogram of subdivision cases encountered.

The histogram may be used to examine coverage during testing as well as characterizing the tessellation algorithm's performance. You should call ResetCounts() once, at the beginning of a stream of tetrahedra. It must be called before AdaptivelySample3Facet() to prevent uninitialized memory reads.

These functions have no effect (and return 0) when PARAVIEW_DEBUG_TESSELLATOR has not been defined. By default, PARAVIEW_DEBUG_TESSELLATOR is not defined, and your code will be fast and efficient. Really!

Definition at line 288 of file vtkStreamingTessellator.h.

◆ AdaptivelySample3Facet() [2/2]

void vtkStreamingTessellator::AdaptivelySample3Facet ( double *  v0,
double *  v1,
double *  v2,
double *  v3,
int  maxDepth 
) const
protected

◆ AdaptivelySample2Facet() [2/2]

void vtkStreamingTessellator::AdaptivelySample2Facet ( double *  v0,
double *  v1,
double *  v2,
int  maxDepth,
int  move = 7 
) const
protected

◆ AdaptivelySample1Facet() [2/2]

void vtkStreamingTessellator::AdaptivelySample1Facet ( double *  v0,
double *  v1,
int  maxDepth 
) const
protected

◆ BestTets()

int vtkStreamingTessellator::BestTets ( int *  ,
double **  ,
int  ,
int   
) const
protected

Member Data Documentation

◆ EdgeCodesToCaseCodesPlusPermutation

int vtkStreamingTessellator::EdgeCodesToCaseCodesPlusPermutation[64][2]
staticprotected

Definition at line 301 of file vtkStreamingTessellator.h.

◆ PermutationsFromIndex

vtkIdType vtkStreamingTessellator::PermutationsFromIndex[24][14]
staticprotected

Definition at line 302 of file vtkStreamingTessellator.h.

◆ TetrahedralDecompositions

vtkIdType vtkStreamingTessellator::TetrahedralDecompositions[]
staticprotected

Definition at line 303 of file vtkStreamingTessellator.h.

◆ PrivateData

void* vtkStreamingTessellator::PrivateData
protected

Definition at line 305 of file vtkStreamingTessellator.h.

◆ ConstPrivateData

const void* vtkStreamingTessellator::ConstPrivateData
protected

Definition at line 306 of file vtkStreamingTessellator.h.

◆ Algorithm

vtkEdgeSubdivisionCriterion* vtkStreamingTessellator::Algorithm
protected

Definition at line 307 of file vtkStreamingTessellator.h.

◆ Callback0

VertexProcessorFunction vtkStreamingTessellator::Callback0
protected

Definition at line 309 of file vtkStreamingTessellator.h.

◆ Callback1

EdgeProcessorFunction vtkStreamingTessellator::Callback1
protected

Definition at line 310 of file vtkStreamingTessellator.h.

◆ Callback2

TriangleProcessorFunction vtkStreamingTessellator::Callback2
protected

Definition at line 311 of file vtkStreamingTessellator.h.

◆ Callback3

TetrahedronProcessorFunction vtkStreamingTessellator::Callback3
protected

Definition at line 312 of file vtkStreamingTessellator.h.

◆ PointDimension

int vtkStreamingTessellator::PointDimension[4]
protected

PointDimension is the length of each double* array associated with each point passed to a subdivision algorithm: PointDimension[i] = 3 + EmbeddingDimension[i] + FieldSize[i] We store this instead of FieldSize for speed.

Only entries 1 through 3 are used; you can't subdivide 0-facets (points). Well, maybe you can, but I can't!

Definition at line 326 of file vtkStreamingTessellator.h.

◆ EmbeddingDimension

int vtkStreamingTessellator::EmbeddingDimension[4]
protected

The parametric dimension of each point passed to the subdivision algorithm.

Only entries 1 through 3 are used; you can't subdivide 0-facets (points). Well, maybe you can, but I can't!

Definition at line 333 of file vtkStreamingTessellator.h.

◆ MaximumNumberOfSubdivisions

int vtkStreamingTessellator::MaximumNumberOfSubdivisions
protected

The number of subdivisions allowed.

Definition at line 338 of file vtkStreamingTessellator.h.


The documentation for this class was generated from the following file: