136#include "vtkCommonCoreModule.h"
137#include "vtkMathPrivate.hxx"
143#include "vtkMathConfigure.h"
147#include <type_traits>
150#define VTK_DBL_MIN 2.2250738585072014e-308
152#define VTK_DBL_MIN DBL_MIN
156#define VTK_DBL_EPSILON 2.2204460492503131e-16
158#define VTK_DBL_EPSILON DBL_EPSILON
161#ifndef VTK_DBL_EPSILON
163#define VTK_DBL_EPSILON 2.2204460492503131e-16
165#define VTK_DBL_EPSILON DBL_EPSILON
169VTK_ABI_NAMESPACE_BEGIN
172class vtkMathInternal;
179VTK_ABI_NAMESPACE_BEGIN
181template <
typename OutT>
186VTK_ABI_NAMESPACE_BEGIN
195 template <
class VectorT,
class =
void>
196 struct VectorImplementsSize : std::false_type
200 template <
class VectorT>
201 struct VectorImplementsSize<VectorT, decltype((void)
std::declval<VectorT>().size(), void())>
209 template <
class VectorT>
210 using EnableIfVectorImplementsSize =
211 typename std::enable_if<VectorImplementsSize<VectorT>::value>::type;
227 static constexpr double Pi() {
return 3.141592653589793; }
233 static float RadiansFromDegrees(
float degrees);
234 static double RadiansFromDegrees(
double degrees);
241 static float DegreesFromRadians(
float radians);
242 static double DegreesFromRadians(
double radians);
249 static int Round(
float f) {
return static_cast<int>(f + (f >= 0.0 ? 0.5 : -0.5)); }
250 static int Round(
double f) {
return static_cast<int>(f + (f >= 0.0 ? 0.5 : -0.5)); }
257 template <
typename OutT>
270 static int Floor(
double x);
277 static int Ceil(
double x);
291 static T
Min(
const T& a,
const T& b);
298 static T
Max(
const T& a,
const T& b);
446 template <
class VectorT1,
class VectorT2>
447 static void Assign(
const VectorT1& a, VectorT2&& b)
462 static void Add(
const float a[3],
const float b[3],
float c[3])
464 for (
int i = 0; i < 3; ++i)
473 static void Add(
const double a[3],
const double b[3],
double c[3])
475 for (
int i = 0; i < 3; ++i)
486 template <
class VectorT1,
class VectorT2,
class VectorT3>
487 static void Add(VectorT1&& a, VectorT2&& b, VectorT3& c)
489 for (
int i = 0; i < 3; ++i)
498 static void Subtract(
const float a[3],
const float b[3],
float c[3])
500 for (
int i = 0; i < 3; ++i)
509 static void Subtract(
const double a[3],
const double b[3],
double c[3])
511 for (
int i = 0; i < 3; ++i)
522 template <
class VectorT1,
class VectorT2,
class VectorT3>
523 static void Subtract(
const VectorT1& a,
const VectorT2& b, VectorT3&& c)
536 for (
int i = 0; i < 3; ++i)
548 for (
int i = 0; i < 2; ++i)
560 for (
int i = 0; i < 3; ++i)
572 for (
int i = 0; i < 2; ++i)
581 static float Dot(
const float a[3],
const float b[3])
583 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
589 static double Dot(
const double a[3],
const double b[3])
591 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
609 template <
typename ReturnTypeT = double,
typename TupleRangeT1,
typename TupleRangeT2,
610 typename EnableT =
typename std::conditional<!std::is_pointer<TupleRangeT1>::value &&
611 !std::is_array<TupleRangeT1>::value,
612 TupleRangeT1, TupleRangeT2>::type::value_type>
613 static ReturnTypeT
Dot(
const TupleRangeT1& a,
const TupleRangeT2& b)
615 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
621 static void Outer(
const float a[3],
const float b[3],
float c[3][3])
623 for (
int i = 0; i < 3; ++i)
625 for (
int j = 0; j < 3; ++j)
627 c[i][j] = a[i] * b[j];
635 static void Outer(
const double a[3],
const double b[3],
double c[3][3])
637 for (
int i = 0; i < 3; ++i)
639 for (
int j = 0; j < 3; ++j)
641 c[i][j] = a[i] * b[j];
651 template <
class VectorT1,
class VectorT2,
class VectorT3>
652 static void Cross(VectorT1&& a, VectorT2&& b, VectorT3& c);
658 static void Cross(
const float a[3],
const float b[3],
float c[3]);
664 static void Cross(
const double a[3],
const double b[3],
double c[3]);
670 static float Norm(
const float* x,
int n);
671 static double Norm(
const double* x,
int n);
677 static float Norm(
const float v[3]) {
return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); }
682 static double Norm(
const double v[3])
684 return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
696 template <
typename ReturnTypeT =
double,
typename TupleRangeT>
699 return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
706 static inline float Normalize(
float v[3]);
712 static inline double Normalize(
double v[3]);
722 static void Perpendiculars(
const double v1[3],
double v2[3],
double v3[3],
double theta);
723 static void Perpendiculars(
const float v1[3],
float v2[3],
float v3[3],
double theta);
732 static bool ProjectVector(
const float a[3],
const float b[3],
float projection[3]);
733 static bool ProjectVector(
const double a[3],
const double b[3],
double projection[3]);
744 static bool ProjectVector2D(
const double a[2],
const double b[2],
double projection[2]);
762 template <
typename ReturnTypeT = double,
typename TupleRangeT1,
typename TupleRangeT2,
763 typename EnableT =
typename std::conditional<!std::is_pointer<TupleRangeT1>::value &&
764 !std::is_array<TupleRangeT1>::value,
765 TupleRangeT1, TupleRangeT2>::type::value_type>
795 const double v1[3],
const double v2[3],
const double vn[3]);
826 static float Dot2D(
const float x[2],
const float y[2]) {
return x[0] * y[0] + x[1] * y[1]; }
831 static double Dot2D(
const double x[2],
const double y[2]) {
return x[0] * y[0] + x[1] * y[1]; }
836 static void Outer2D(
const float x[2],
const float y[2],
float A[2][2])
838 for (
int i = 0; i < 2; ++i)
840 for (
int j = 0; j < 2; ++j)
842 A[i][j] = x[i] * y[j];
850 static void Outer2D(
const double x[2],
const double y[2],
double A[2][2])
852 for (
int i = 0; i < 2; ++i)
854 for (
int j = 0; j < 2; ++j)
856 A[i][j] = x[i] * y[j];
865 static float Norm2D(
const float x[2]) {
return std::sqrt(x[0] * x[0] + x[1] * x[1]); }
871 static double Norm2D(
const double x[2]) {
return std::sqrt(x[0] * x[0] + x[1] * x[1]); }
877 static float Normalize2D(
float v[2]);
883 static double Normalize2D(
double v[2]);
890 return c1[0] * c2[1] - c2[0] * c1[1];
897 static double Determinant2x2(
double a,
double b,
double c,
double d) {
return a * d - b * c; }
900 return c1[0] * c2[1] - c2[0] * c1[1];
916 static void LUSolve3x3(
const float A[3][3],
const int index[3],
float x[3]);
917 static void LUSolve3x3(
const double A[3][3],
const int index[3],
double x[3]);
926 static void LinearSolve3x3(
const double A[3][3],
const double x[3],
double y[3]);
933 static void Multiply3x3(
const float A[3][3],
const float v[3],
float u[3]);
934 static void Multiply3x3(
const double A[3][3],
const double v[3],
double u[3]);
941 static void Multiply3x3(
const float A[3][3],
const float B[3][3],
float C[3][3]);
942 static void Multiply3x3(
const double A[3][3],
const double B[3][3],
double C[3][3]);
968 template <
int RowsT,
int MidDimT,
int ColsT,
969 class LayoutT1 = vtkMatrixUtilities::Layout::Identity,
970 class LayoutT2 = vtkMatrixUtilities::Layout::Identity,
class MatrixT1,
class MatrixT2,
974 vtkMathPrivate::MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2>::Compute(
975 std::forward<MatrixT1>(M1), std::forward<MatrixT2>(M2), std::forward<MatrixT3>(M3));
998 template <
int RowsT,
int ColsT,
class LayoutT = vtkMatrixUtilities::Layout::Identity,
999 class MatrixT,
class VectorT1,
class VectorT2>
1002 vtkMathPrivate::MultiplyMatrix<RowsT, ColsT, 1, LayoutT>::Compute(
1003 std::forward<MatrixT>(M), std::forward<VectorT1>(X), std::forward<VectorT2>(Y));
1011 template <
class ScalarT,
int SizeT,
class VectorT1,
class VectorT2,
1012 class =
typename std::enable_if<SizeT != DYNAMIC_VECTOR_SIZE()>::type>
1013 static ScalarT
Dot(VectorT1&& x, VectorT2&& y)
1015 return vtkMathPrivate::ContractRowWithCol<ScalarT, 1, SizeT, 1, 0, 0,
1016 vtkMatrixUtilities::Layout::Identity,
1017 vtkMatrixUtilities::Layout::Transpose>::Compute(std::forward<VectorT1>(x),
1018 std::forward<VectorT2>(y));
1027 template <
class ScalarT,
int SizeT,
class VectorT1,
class VectorT2,
1028 class =
typename std::enable_if<SizeT == DYNAMIC_VECTOR_SIZE()>::type,
1029 class = EnableIfVectorImplementsSize<VectorT1>>
1030 static ScalarT
Dot(VectorT1&& x, VectorT2&& y)
1033 using SizeType =
decltype(std::declval<VectorT1>().size());
1034 for (SizeType dim = 0; dim < x.size(); ++dim)
1036 dot += x[dim] * y[dim];
1048 template <
int SizeT,
class VectorT>
1072 template <
int SizeT,
class LayoutT = vtkMatrixUtilities::Layout::Identity,
class MatrixT>
1076 return vtkMathPrivate::Determinant<SizeT, LayoutT>::Compute(std::forward<MatrixT>(M));
1094 template <
int SizeT,
class LayoutT = vtkMatrixUtilities::Layout::Identity,
class MatrixT1,
1098 vtkMathPrivate::InvertMatrix<SizeT, LayoutT>::Compute(
1099 std::forward<MatrixT1>(M1), std::forward<MatrixT2>(M2));
1115 template <
int RowsT,
int ColsT,
class LayoutT = vtkMatrixUtilities::Layout::Identity,
1116 class MatrixT,
class VectorT1,
class VectorT2>
1119 vtkMathPrivate::LinearSolve<RowsT, ColsT, LayoutT>::Compute(
1120 std::forward<MatrixT>(M), std::forward<VectorT1>(x), std::forward<VectorT2>(y));
1137 template <
class ScalarT,
int SizeT,
class LayoutT = vtkMatrixUtilities::Layout::Identity,
1138 class VectorT1,
class MatrixT,
class VectorT2,
1139 class =
typename std::enable_if<SizeT != DYNAMIC_VECTOR_SIZE()>::type>
1140 static ScalarT
Dot(VectorT1&& x, MatrixT&& M, VectorT2&& y)
1143 vtkMathPrivate::MultiplyMatrix<SizeT, SizeT, 1, LayoutT>::Compute(
1144 std::forward<MatrixT>(M), std::forward<VectorT2>(y), tmp);
1145 return vtkMathPrivate::ContractRowWithCol<ScalarT, 1, SizeT, 1, 0, 0,
1146 vtkMatrixUtilities::Layout::Identity,
1147 vtkMatrixUtilities::Layout::Transpose>::Compute(std::forward<VectorT1>(x), tmp);
1155 static void MultiplyMatrix(
const double*
const* A,
const double*
const* B,
unsigned int rowA,
1156 unsigned int colA,
unsigned int rowB,
unsigned int colB,
double** C);
1173 static void Invert3x3(
const double A[3][3],
double AI[3][3]);
1195 static float Determinant3x3(
const float c1[3],
const float c2[3],
const float c3[3]);
1200 static double Determinant3x3(
const double c1[3],
const double c2[3],
const double c3[3]);
1208 static double Determinant3x3(
double a1,
double a2,
double a3,
double b1,
double b2,
double b3,
1209 double c1,
double c2,
double c3);
1221 template <
class QuaternionT,
class MatrixT,
1222 class EnableT =
typename std::enable_if<!vtkMatrixUtilities::MatrixIs2DArray<MatrixT>()>::type>
1238 template <
class MatrixT,
class QuaternionT,
1239 class EnableT =
typename std::enable_if<!vtkMatrixUtilities::MatrixIs2DArray<MatrixT>()>::type>
1304 const float A[3][3],
float U[3][3],
float w[3],
float VT[3][3]);
1306 const double A[3][3],
double U[3][3],
double w[3],
double VT[3][3]);
1317 double a00,
double a01,
double a10,
double a11,
double b0,
double b1,
double& x0,
double& x1);
1343 double** A,
double** AI,
int size,
int* tmp1Size,
double* tmp2Size);
1437 int numberOfSamples,
double** xt,
int xOrder,
double**
mt);
1454 int yOrder,
double**
mt,
int checkHomogeneous = 1);
1466 RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv + 1, hsv + 2);
1468 static void RGBToHSV(
float r,
float g,
float b,
float*
h,
float* s,
float* v);
1469 static void RGBToHSV(
const double rgb[3],
double hsv[3])
1471 RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv + 1, hsv + 2);
1473 static void RGBToHSV(
double r,
double g,
double b,
double*
h,
double* s,
double* v);
1486 HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb + 1, rgb + 2);
1488 static void HSVToRGB(
float h,
float s,
float v,
float* r,
float* g,
float* b);
1489 static void HSVToRGB(
const double hsv[3],
double rgb[3])
1491 HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb + 1, rgb + 2);
1493 static void HSVToRGB(
double h,
double s,
double v,
double* r,
double* g,
double* b);
1503 ProLabToXYZ(prolab[0], prolab[1], prolab[2], xyz + 0, xyz + 1, xyz + 2);
1505 static void ProLabToXYZ(
double L,
double a,
double b,
double* x,
double* y,
double* z);
1515 XYZToProLab(xyz[0], xyz[1], xyz[2], prolab + 0, prolab + 1, prolab + 2);
1517 static void XYZToProLab(
double x,
double y,
double z,
double* L,
double* a,
double* b);
1524 static void LabToXYZ(
const double lab[3],
double xyz[3])
1526 LabToXYZ(lab[0], lab[1], lab[2], xyz + 0, xyz + 1, xyz + 2);
1528 static void LabToXYZ(
double L,
double a,
double b,
double* x,
double* y,
double* z);
1535 static void XYZToLab(
const double xyz[3],
double lab[3])
1537 XYZToLab(xyz[0], xyz[1], xyz[2], lab + 0, lab + 1, lab + 2);
1539 static void XYZToLab(
double x,
double y,
double z,
double* L,
double* a,
double* b);
1546 static void XYZToRGB(
const double xyz[3],
double rgb[3])
1548 XYZToRGB(xyz[0], xyz[1], xyz[2], rgb + 0, rgb + 1, rgb + 2);
1550 static void XYZToRGB(
double x,
double y,
double z,
double* r,
double* g,
double* b);
1557 static void RGBToXYZ(
const double rgb[3],
double xyz[3])
1559 RGBToXYZ(rgb[0], rgb[1], rgb[2], xyz + 0, xyz + 1, xyz + 2);
1561 static void RGBToXYZ(
double r,
double g,
double b,
double* x,
double* y,
double* z);
1572 static void RGBToLab(
const double rgb[3],
double lab[3])
1574 RGBToLab(rgb[0], rgb[1], rgb[2], lab + 0, lab + 1, lab + 2);
1576 static void RGBToLab(
double red,
double green,
double blue,
double* L,
double* a,
double* b);
1585 ProLabToRGB(prolab[0], prolab[1], prolab[2], rgb + 0, rgb + 1, rgb + 2);
1587 static void ProLabToRGB(
double L,
double a,
double b,
double* red,
double* green,
double* blue);
1600 RGBToProLab(rgb[0], rgb[1], rgb[2], prolab + 0, prolab + 1, prolab + 2);
1602 static void RGBToProLab(
double red,
double green,
double blue,
double* L,
double* a,
double* b);
1609 static void LabToRGB(
const double lab[3],
double rgb[3])
1611 LabToRGB(lab[0], lab[1], lab[2], rgb + 0, rgb + 1, rgb + 2);
1613 static void LabToRGB(
double L,
double a,
double b,
double* red,
double* green,
double* blue);
1637 if (bounds[1] - bounds[0] < 0.0)
1650 static T ClampValue(
const T& value,
const T& min,
const T&
max);
1657 static void ClampValue(
double* value,
const double range[2]);
1658 static void ClampValue(
double value,
const double range[2],
double* clamped_value);
1659 static void ClampValues(
double* values,
int nb_values,
const double range[2]);
1661 const double* values,
int nb_values,
const double range[2],
double* clamped_values);
1676 template <
class T1,
class T2>
1696 double range_min,
double range_max,
double scale = 1.0,
double shift = 0.0);
1720 const double bounds1[6],
const double bounds2[6],
const double delta[3]);
1728 const double point[3],
const double bounds[6],
const double delta[3]);
1740 const double bounds[6],
const double normal[3],
const double point[3]);
1752 const double p1[3],
const double p2[3],
const double p3[3],
double center[3]);
1830 template <
class Iter1,
class Iter2,
class Iter3>
1831 static void Convolve1D(Iter1 beginSample, Iter1 endSample, Iter2 beginKernel, Iter2 endKernel,
1834 int sampleSize = std::distance(beginSample, endSample);
1835 int kernelSize = std::distance(beginKernel, endKernel);
1836 int outSize = std::distance(beginOut, endOut);
1838 if (sampleSize <= 0 || kernelSize <= 0 || outSize <= 0)
1849 begin =
static_cast<int>(std::ceil((std::min)(sampleSize, kernelSize) / 2.0)) - 1;
1850 end = begin + (std::max)(sampleSize, kernelSize);
1853 begin = (std::min)(sampleSize, kernelSize) - 1;
1854 end = begin + std::abs(sampleSize - kernelSize) + 1;
1861 for (
int i = begin; i < end; i++)
1863 Iter3 out = beginOut + i - begin;
1865 for (
int j = (std::max)(i - sampleSize + 1, 0); j <= (std::min)(i, kernelSize - 1); j++)
1867 *out += *(beginSample + (i - j)) * *(beginKernel + j);
1878 double directionVector[3] = { p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2] };
1880 result[0] = p2[0] + (offset * directionVector[0]);
1881 result[1] = p2[1] + (offset * directionVector[1]);
1882 result[2] = p2[2] + (offset * directionVector[2]);
1893 void operator=(
const vtkMath&) =
delete;
1899 return x * 0.017453292f;
1905 return x * 0.017453292519943295;
1911 return x * 57.2957795131f;
1917 return x * 57.29577951308232;
1923 return ((x != 0) & ((x & (x - 1)) == 0));
1930 unsigned int z =
static_cast<unsigned int>(((x > 0) ? x - 1 : 0));
1936 return static_cast<int>(z + 1);
1944 int i =
static_cast<int>(x);
1953 int i =
static_cast<int>(x);
1961 return (b <= a ? b : a);
1968 return (b > a ? b : a);
1977 for (
int i = 0; i < 3; ++i)
1991 for (
int i = 0; i < 3; ++i)
2005 for (
int i = 0; i < 2; ++i)
2019 for (
int i = 0; i < 2; ++i)
2030 return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
2031 c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
2037 return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
2038 c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
2043 double a1,
double a2,
double a3,
double b1,
double b2,
double b3,
double c1,
double c2,
double c3)
2052 return ((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) +
2053 (p1[2] - p2[2]) * (p1[2] - p2[2]));
2059 return ((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) +
2060 (p1[2] - p2[2]) * (p1[2] - p2[2]));
2064template <
typename ReturnTypeT,
typename TupleRangeT1,
typename TupleRangeT2,
typename EnableT>
2067 return ((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) +
2068 (p1[2] - p2[2]) * (p1[2] - p2[2]));
2074 return ((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]));
2078template <
class VectorT1,
class VectorT2,
class VectorT3>
2082 ValueType Cx = a[1] * b[2] - a[2] * b[1];
2083 ValueType Cy = a[2] * b[0] - a[0] * b[2];
2084 ValueType Cz = a[0] * b[1] - a[1] * b[0];
2094 float Cx = a[1] * b[2] - a[2] * b[1];
2095 float Cy = a[2] * b[0] - a[0] * b[2];
2096 float Cz = a[0] * b[1] - a[1] * b[0];
2106 double Cx = a[1] * b[2] - a[2] * b[1];
2107 double Cy = a[2] * b[0] - a[0] * b[2];
2108 double Cz = a[0] * b[1] - a[1] * b[0];
2118 return A[0][0] * A[1][1] * A[2][2] + A[1][0] * A[2][1] * A[0][2] + A[2][0] * A[0][1] * A[1][2] -
2119 A[0][0] * A[2][1] * A[1][2] - A[1][0] * A[0][1] * A[2][2] - A[2][0] * A[1][1] * A[0][2];
2138 assert(
"pre: valid_range" && min <=
max);
2139 return std::clamp(value, min,
max);
2147 assert(
"pre: valid_range" && range[0] <= range[1]);
2156 if (range && clamped_value)
2158 assert(
"pre: valid_range" && range[0] <= range[1]);
2167 assert(
"pre: valid_range" && range[0] <= range[1]);
2170 if (range[0] == range[1])
2180 result = (result - range[0]) / (range[1] - range[0]);
2183 assert(
"post: valid_result" && result >= 0.0 && result <= 1.0);
2189template <
class T1,
class T2>
2192 for (
int i = 0; i < 3; ++i)
2194 tensor[4 * i] = symmTensor[i];
2196 tensor[1] = tensor[3] = symmTensor[3];
2197 tensor[2] = tensor[6] = symmTensor[5];
2198 tensor[5] = tensor[7] = symmTensor[4];
2205 tensor[6] = tensor[5];
2206 tensor[7] = tensor[4];
2207 tensor[8] = tensor[2];
2208 tensor[4] = tensor[1];
2209 tensor[5] = tensor[7];
2210 tensor[2] = tensor[6];
2211 tensor[1] = tensor[3];
2213VTK_ABI_NAMESPACE_END
2217template <
class QuaternionT,
class MatrixT>
2218inline void vtkQuaternionToMatrix3x3(QuaternionT&& quat, MatrixT&& A)
2222 Scalar
ww = quat[0] * quat[0];
2223 Scalar wx = quat[0] * quat[1];
2224 Scalar wy = quat[0] * quat[2];
2225 Scalar wz = quat[0] * quat[3];
2227 Scalar xx = quat[1] * quat[1];
2228 Scalar yy = quat[2] * quat[2];
2229 Scalar zz = quat[3] * quat[3];
2231 Scalar xy = quat[1] * quat[2];
2232 Scalar xz = quat[1] * quat[3];
2233 Scalar yz = quat[2] * quat[3];
2235 Scalar rr = xx + yy + zz;
2237 Scalar f = 1 / (
ww + rr);
2238 Scalar s = (
ww - rr) * f;
2244 Wrapper::template Get<0, 0>(Ar) = xx * f + s;
2245 Wrapper::template Get<1, 0>(Ar) = (xy + wz) * f;
2246 Wrapper::template Get<2, 0>(Ar) = (xz - wy) * f;
2248 Wrapper::template Get<0, 1>(Ar) = (xy - wz) * f;
2249 Wrapper::template Get<1, 1>(Ar) = yy * f + s;
2250 Wrapper::template Get<2, 1>(Ar) = (yz + wx) * f;
2252 Wrapper::template Get<0, 2>(Ar) = (xz + wy) * f;
2253 Wrapper::template Get<1, 2>(Ar) = (yz - wx) * f;
2254 Wrapper::template Get<2, 2>(Ar) = zz * f + s;
2258VTK_ABI_NAMESPACE_BEGIN
2262 vtkQuaternionToMatrix3x3(quat, A);
2268 vtkQuaternionToMatrix3x3(quat, A);
2272template <
class QuaternionT,
class MatrixT,
class EnableT>
2275 vtkQuaternionToMatrix3x3(std::forward<QuaternionT>(q), std::forward<MatrixT>(A));
2277VTK_ABI_NAMESPACE_END
2286template <
class MatrixT,
class QuaternionT>
2287inline void vtkMatrix3x3ToQuaternion(MatrixT&& A, QuaternionT&& quat)
2298 N[0][0] = Wrapper::template Get<0, 0>(Ar) + Wrapper::template Get<1, 1>(Ar) +
2299 Wrapper::template Get<2, 2>(Ar);
2300 N[1][1] = Wrapper::template Get<0, 0>(Ar) - Wrapper::template Get<1, 1>(Ar) -
2301 Wrapper::template Get<2, 2>(Ar);
2302 N[2][2] = -Wrapper::template Get<0, 0>(Ar) + Wrapper::template Get<1, 1>(Ar) -
2303 Wrapper::template Get<2, 2>(Ar);
2304 N[3][3] = -Wrapper::template Get<0, 0>(Ar) - Wrapper::template Get<1, 1>(Ar) +
2305 Wrapper::template Get<2, 2>(Ar);
2308 N[0][1] = N[1][0] = Wrapper::template Get<2, 1>(Ar) - Wrapper::template Get<1, 2>(Ar);
2309 N[0][2] = N[2][0] = Wrapper::template Get<0, 2>(Ar) - Wrapper::template Get<2, 0>(Ar);
2310 N[0][3] = N[3][0] = Wrapper::template Get<1, 0>(Ar) - Wrapper::template Get<0, 1>(Ar);
2312 N[1][2] = N[2][1] = Wrapper::template Get<1, 0>(Ar) + Wrapper::template Get<0, 1>(Ar);
2313 N[1][3] = N[3][1] = Wrapper::template Get<0, 2>(Ar) + Wrapper::template Get<2, 0>(Ar);
2314 N[2][3] = N[3][2] = Wrapper::template Get<2, 1>(Ar) + Wrapper::template Get<1, 2>(Ar);
2316 Scalar eigenvectors[4][4], eigenvalues[4];
2320 Scalar *NTemp[4], *eigenvectorsTemp[4];
2321 for (
int i = 0; i < 4; ++i)
2324 eigenvectorsTemp[i] = eigenvectors[i];
2329 quat[0] = eigenvectors[0][0];
2330 quat[1] = eigenvectors[1][0];
2331 quat[2] = eigenvectors[2][0];
2332 quat[3] = eigenvectors[3][0];
2336VTK_ABI_NAMESPACE_BEGIN
2340 vtkMatrix3x3ToQuaternion(A, quat);
2346 vtkMatrix3x3ToQuaternion(A, quat);
2350template <
class MatrixT,
class QuaternionT,
class EnableT>
2353 vtkMatrix3x3ToQuaternion(std::forward<MatrixT>(A), std::forward<QuaternionT>(q));
2355VTK_ABI_NAMESPACE_END
2359VTK_ABI_NAMESPACE_BEGIN
2361template <
typename OutT>
2369 *ret =
static_cast<OutT
>((val >= 0.0) ? (val + 0.5) : (val - 0.5));
2389 *retVal =
static_cast<float>(val);
2391VTK_ABI_NAMESPACE_END
2394VTK_ABI_NAMESPACE_BEGIN
2396#if defined(VTK_HAS_ISINF) || defined(VTK_HAS_STD_ISINF)
2397#define VTK_MATH_ISINF_IS_INLINE
2400#if defined(VTK_HAS_STD_ISINF)
2401 return std::isinf(x);
2403 return (isinf(x) != 0);
2409#if defined(VTK_HAS_ISNAN) || defined(VTK_HAS_STD_ISNAN)
2410#define VTK_MATH_ISNAN_IS_INLINE
2413#if defined(VTK_HAS_STD_ISNAN)
2414 return std::isnan(x);
2416 return (
isnan(x) != 0);
2422#if defined(VTK_HAS_ISFINITE) || defined(VTK_HAS_STD_ISFINITE) || defined(VTK_HAS_FINITE)
2423#define VTK_MATH_ISFINITE_IS_INLINE
2426#if defined(VTK_HAS_STD_ISFINITE)
2427 return std::isfinite(x);
2428#elif defined(VTK_HAS_ISFINITE)
2429 return (isfinite(x) != 0);
2431 return (finite(x) != 0);
2436VTK_ABI_NAMESPACE_END
Gaussian sequence of pseudo random numbers implemented with the Box-Mueller transform.
a simple class to control print indentation
static ReturnTypeT Distance2BetweenPoints(const TupleRangeT1 &p1, const TupleRangeT2 &p2)
Compute distance squared between two points p1 and p2.
static void Multiply3x3(const float A[3][3], const float B[3][3], float C[3][3])
Multiply one 3x3 matrix by another according to C = AB.
static double Dot(const double a[3], const double b[3])
Dot product of two 3-vectors (double version).
static int GetScalarTypeFittingRange(double range_min, double range_max, double scale=1.0, double shift=0.0)
Return the scalar type that is most likely to have enough precision to store a given range of data on...
static void RGBToXYZ(double r, double g, double b, double *x, double *y, double *z)
Convert color from the RGB system to CIE XYZ.
static void Multiply3x3(const double A[3][3], const double B[3][3], double C[3][3])
Multiply one 3x3 matrix by another according to C = AB.
static double Norm(const double *x, int n)
Compute the norm of n-vector.
static int Round(float f)
Rounds a float to the nearest integer.
static vtkIdType ComputeGCD(vtkIdType m, vtkIdType n)
Compute the greatest common divisor (GCD) of two positive integers m and n.
static void XYZToProLab(const double xyz[3], double prolab[3])
Convert Color from the CIE XYZ system to ProLAB.
static double Norm2D(const double x[2])
Compute the norm of a 2-vector.
static void XYZToProLab(double x, double y, double z, double *L, double *a, double *b)
Convert Color from the CIE XYZ system to ProLAB.
static double GaussianAmplitude(double variance, double distanceFromMean)
Compute the amplitude of a Gaussian function with mean=0 and specified variance.
static void XYZToRGB(double x, double y, double z, double *r, double *g, double *b)
Convert color from the CIE XYZ system to RGB.
static void GetPointAlongLine(double result[3], double p1[3], double p2[3], const double offset)
Get the coordinates of a point along a line defined by p1 and p2, at a specified offset relative to p...
static void Subtract(const float a[3], const float b[3], float c[3])
Subtraction of two 3-vectors (float version).
static void LUSolve3x3(const double A[3][3], const int index[3], double x[3])
LU back substitution for a 3x3 matrix.
static vtkTypeBool SolveHomogeneousLeastSquares(int numberOfSamples, double **xt, int xOrder, double **mt)
Solves for the least squares best fit matrix for the homogeneous equation X'M' = 0'.
static void Outer2D(const float x[2], const float y[2], float A[2][2])
Outer product of two 2-vectors (float version).
static bool ProjectVector(const double a[3], const double b[3], double projection[3])
Compute the projection of vector a on vector b and return it in projection[3].
static vtkSmartPointer< vtkMathInternal > Internal
static float Norm(const float *x, int n)
Compute the norm of n-vector.
static vtkTypeBool ExtentIsWithinOtherExtent(const int extent1[6], const int extent2[6])
Return true if first 3D extent is within second 3D extent Extent is x-min, x-max, y-min,...
static double GaussianAmplitude(double mean, double variance, double position)
Compute the amplitude of a Gaussian function with specified mean and variance.
static void Add(const double a[3], const double b[3], double c[3])
Addition of two 3-vectors (double version).
static void RGBToHSV(float r, float g, float b, float *h, float *s, float *v)
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
static float Norm(const float v[3])
Compute the norm of 3-vector (float version).
static ReturnTypeT Dot(const TupleRangeT1 &a, const TupleRangeT2 &b)
Compute dot product between two points p1 and p2.
static vtkTypeBool Jacobi(double **a, double *w, double **v)
Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3 real symmetric matrix.
static ScalarT Dot(VectorT1 &&x, VectorT2 &&y)
Computes the dot product between 2 vectors x and y.
static void XYZToLab(const double xyz[3], double lab[3])
Convert Color from the CIE XYZ system to CIE-L*ab.
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
static vtkTypeInt64 Factorial(int N)
Compute N factorial, N!
static vtkTypeInt64 Binomial(int m, int n)
The number of combinations of n objects from a pool of m objects (m>n).
static double Random()
Generate pseudo-random numbers distributed according to the uniform distribution between 0....
static void Identity3x3(float A[3][3])
Set A to the identity matrix.
static void SingularValueDecomposition3x3(const float A[3][3], float U[3][3], float w[3], float VT[3][3])
Perform singular value decomposition on a 3x3 matrix.
static double Nan()
Special IEEE-754 number used to represent Not-A-Number (Nan).
static void Perpendiculars(const float v1[3], float v2[3], float v3[3], double theta)
Given a unit vector v1, find two unit vectors v2 and v3 such that v1 cross v2 = v3 (i....
static double Gaussian(double mean, double std)
Generate pseudo-random numbers distributed according to the Gaussian distribution with mean mean and ...
static bool IsFinite(double x)
Test if a number has finite value i.e.
static void LUSolveLinearSystem(double **A, int *index, double *x, int size)
Solve linear equations Ax = b using LU decomposition A = LU where L is lower triangular matrix and U ...
static double EstimateMatrixCondition(const double *const *A, int size)
Estimate the condition number of a LU factored matrix.
static void LUFactor3x3(float A[3][3], int index[3])
LU Factorization of a 3x3 matrix.
static void LinearSolve(MatrixT &&M, VectorT1 &&x, VectorT2 &&y)
This method solves linear systems M * x = y.
static void FreeCombination(int *combination)
Free the "iterator" array created by vtkMath::BeginCombination.
static double Random(double min, double max)
Generate pseudo-random numbers distributed according to the uniform distribution between min and max.
static void TensorFromSymmetricTensor(const T1 symmTensor[6], T2 tensor[9])
Convert a 6-Component symmetric tensor into a 9-Component tensor, no allocation performed.
static void LabToXYZ(const double lab[3], double xyz[3])
Convert color from the CIE-L*ab system to CIE XYZ.
static double Solve3PointCircle(const double p1[3], const double p2[3], const double p3[3], double center[3])
In Euclidean space, there is a unique circle passing through any given three non-collinear points P1,...
static vtkTypeBool PointIsWithinBounds(const double point[3], const double bounds[6], const double delta[3])
Return true if point is within the given 3D bounds Bounds is x-min, x-max, y-min, y-max,...
static float Dot(const float a[3], const float b[3])
Dot product of two 3-vectors (float version).
static void Diagonalize3x3(const float A[3][3], float w[3], float V[3][3])
Diagonalize a symmetric 3x3 matrix and return the eigenvalues in w and the eigenvectors in the column...
static void LabToXYZ(double L, double a, double b, double *x, double *y, double *z)
Convert color from the CIE-L*ab system to CIE XYZ.
static vtkTypeBool GetAdjustedScalarRange(vtkDataArray *array, int comp, double range[2])
Get a vtkDataArray's scalar range for a given component.
static bool ProjectVector(const float a[3], const float b[3], float projection[3])
Compute the projection of vector a on vector b and return it in projection[3].
static void MultiplyScalar2D(float a[2], float s)
Multiplies a 2-vector by a scalar (float version).
static void HSVToRGB(const float hsv[3], float rgb[3])
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
static void Assign(const double a[3], double b[3])
Assign values to a 3-vector (double version).
static double Determinant2x2(const double c1[2], const double c2[2])
Calculate the determinant of a 2x2 matrix: | a b | | c d |.
static T Max(const T &a, const T &b)
Returns the maximum of the two arguments provided.
static void Outer2D(const double x[2], const double y[2], double A[2][2])
Outer product of two 2-vectors (double version).
static void RandomSeed(int s)
Initialize seed value.
static double NegInf()
Special IEEE-754 number used to represent negative infinity.
static void MultiplyScalar2D(double a[2], double s)
Multiplies a 2-vector by a scalar (double version).
static void LabToRGB(double L, double a, double b, double *red, double *green, double *blue)
Convert color from the CIE-L*ab system to RGB.
static double Gaussian()
Generate pseudo-random numbers distributed according to the standard normal distribution.
static int Ceil(double x)
Rounds a double to the nearest integer not less than itself.
static void HSVToRGB(const double hsv[3], double rgb[3])
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
~vtkMath() override=default
static double Inf()
Special IEEE-754 number used to represent positive infinity.
static vtkTypeBool Jacobi(float **a, float *w, float **v)
Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3 real symmetric matrix.
static int PlaneIntersectsAABB(const double bounds[6], const double normal[3], const double point[3])
Implements Plane / Axis-Aligned Bounding-Box intersection as described in Graphics Gems IV,...
static ScalarT Dot(VectorT1 &&x, VectorT2 &&y)
Computes the dot product between 2 vectors x and y.
static void RGBToXYZ(const double rgb[3], double xyz[3])
Convert color from the RGB system to CIE XYZ.
static void QuaternionToMatrix3x3(const float quat[4], float A[3][3])
Convert a quaternion to a 3x3 rotation matrix.
static int NearestPowerOfTwo(int x)
Compute the nearest power of two that is not less than x.
static void HSVToRGB(double h, double s, double v, double *r, double *g, double *b)
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
static void SingularValueDecomposition3x3(const double A[3][3], double U[3][3], double w[3], double VT[3][3])
Perform singular value decomposition on a 3x3 matrix.
static double SignedAngleBetweenVectors(const double v1[3], const double v2[3], const double vn[3])
Compute signed angle in radians between two vectors with regard to a third orthogonal vector.
static ScalarT Dot(VectorT1 &&x, MatrixT &&M, VectorT2 &&y)
Computes the dot product x^T M y, where x and y are vectors and M is a metric matrix.
static float Normalize2D(float v[2])
Normalize (in place) a 2-vector.
static void Invert3x3(const double A[3][3], double AI[3][3])
Invert a 3x3 matrix.
static void HSVToRGB(float h, float s, float v, float *r, float *g, float *b)
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
static constexpr int DYNAMIC_VECTOR_SIZE()
When this value is passed to a select templated functions in vtkMath, the computation can be performe...
static void MultiplyQuaternion(const double q1[4], const double q2[4], double q[4])
Multiply two quaternions.
static void Multiply3x3(const double A[3][3], const double v[3], double u[3])
Multiply a vector by a 3x3 matrix.
static void Outer(const double a[3], const double b[3], double c[3][3])
Outer product of two 3-vectors (double version).
static vtkTypeBool InvertMatrix(double **A, double **AI, int size, int *tmp1Size, double *tmp2Size)
Thread safe version of InvertMatrix method.
static vtkTypeBool InvertMatrix(double **A, double **AI, int size)
Invert input square matrix A into matrix AI.
static void LUSolve3x3(const float A[3][3], const int index[3], float x[3])
LU back substitution for a 3x3 matrix.
static int GetSeed()
Return the current seed used by the random number generator.
static void Assign(const VectorT1 &a, VectorT2 &&b)
Assign values to a 3-vector (templated version).
static float RadiansFromDegrees(float degrees)
Convert degrees into radians.
static void Convolve1D(Iter1 beginSample, Iter1 endSample, Iter2 beginKernel, Iter2 endKernel, Iter3 beginOut, Iter3 endOut, ConvolutionMode mode=ConvolutionMode::FULL)
Compute the convolution of a sampled 1D signal by a given kernel.
static void RotateVectorByWXYZ(const double v[3], const double q[4], double r[3])
rotate a vector by WXYZ using // https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
static void Add(const float a[3], const float b[3], float c[3])
Addition of two 3-vectors (float version).
static int CeilLog2(vtkTypeUInt64 x)
Gives the exponent of the lowest power of two not less than x.
static void RGBToProLab(double red, double green, double blue, double *L, double *a, double *b)
Convert color from the RGB system to Prolab The input RGB must be values in the range [0,...
static void ProLabToXYZ(const double prolab[3], double xyz[3])
Convert color from the ProLAB system to CIE XYZ.
static vtkTypeBool AreBoundsInitialized(const double bounds[6])
Are the bounds initialized?
static bool ProjectVector2D(const double a[2], const double b[2], double projection[2])
Compute the projection of 2D vector a on 2D vector b and returns the result in projection[2].
static vtkTypeBool JacobiN(float **a, int n, float *w, float **v)
JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn real symmetric matrix.
static int NextCombination(int m, int n, int *combination)
Given m, n, and a valid combination of n integers in the range [0,m[, this function alters the intege...
static constexpr double Pi()
A mathematical constant.
static void Multiply3x3(const float A[3][3], const float v[3], float u[3])
Multiply a vector by a 3x3 matrix.
static void Subtract(const double a[3], const double b[3], double c[3])
Subtraction of two 3-vectors (double version).
static void ProLabToXYZ(double L, double a, double b, double *x, double *y, double *z)
Convert color from the ProLAB system to CIE XYZ.
static void RGBToProLab(const double rgb[3], double prolab[3])
Convert color from the RGB system to Prolab The input RGB must be values in the range [0,...
static void ProLabToRGB(double L, double a, double b, double *red, double *green, double *blue)
Convert color from the ProLab system to RGB.
static void Matrix3x3ToQuaternion(const float A[3][3], float quat[4])
Convert a 3x3 matrix into a quaternion.
static void Orthogonalize3x3(const double A[3][3], double B[3][3])
Orthogonalize a 3x3 matrix and put the result in B.
static void XYZToRGB(const double xyz[3], double rgb[3])
Convert color from the CIE XYZ system to RGB.
static double ClampAndNormalizeValue(double value, const double range[2])
Clamp a value against a range and then normalize it between 0 and 1.
static void MultiplyScalar(double a[3], double s)
Multiplies a 3-vector by a scalar (double version).
static double Dot2D(const double x[2], const double y[2])
Dot product of two 2-vectors.
static void LinearSolve3x3(const float A[3][3], const float x[3], float y[3])
Solve Ay = x for y and place the result in y.
static vtkTypeBool IsNan(double x)
Test if a number is equal to the special floating point value Not-A-Number (Nan).
static void Diagonalize3x3(const double A[3][3], double w[3], double V[3][3])
Diagonalize a symmetric 3x3 matrix and return the eigenvalues in w and the eigenvectors in the column...
static void RGBToLab(const double rgb[3], double lab[3])
Convert color from the RGB system to CIE-L*ab.
static void ProLabToRGB(const double prolab[3], double rgb[3])
Convert color from the ProLab system to RGB.
static int Floor(double x)
Rounds a double to the nearest integer not greater than itself.
static void RotateVectorByNormalizedQuaternion(const double v[3], const double q[4], double r[3])
rotate a vector by a normalized quaternion using // https://en.wikipedia.org/wiki/Rodrigues%27_rotati...
static void Subtract(const VectorT1 &a, const VectorT2 &b, VectorT3 &&c)
Subtraction of two 3-vectors (templated version).
static vtkTypeBool BoundsIsWithinOtherBounds(const double bounds1[6], const double bounds2[6], const double delta[3])
Return true if first 3D bounds is within the second 3D bounds Bounds is x-min, x-max,...
static double Determinant2x2(double a, double b, double c, double d)
Calculate the determinant of a 2x2 matrix: | a b | | c d |.
static void RGBToHSV(const double rgb[3], double hsv[3])
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
static vtkTypeBool JacobiN(double **a, int n, double *w, double **v)
JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn real symmetric matrix.
static double AngleBetweenVectors(const double v1[3], const double v2[3])
Compute angle in radians between two vectors.
static void MultiplyMatrix(const double *const *A, const double *const *B, unsigned int rowA, unsigned int colA, unsigned int rowB, unsigned int colB, double **C)
General matrix multiplication.
static float DegreesFromRadians(float radians)
Convert radians into degrees.
static float Determinant2x2(const float c1[2], const float c2[2])
Compute determinant of 2x2 matrix.
static int Round(double f)
static vtkTypeBool IsInf(double x)
Test if a number is equal to the special floating point value infinity.
static double GaussianWeight(double mean, double variance, double position)
Compute the amplitude of an unnormalized Gaussian function with specified mean and variance.
static void UninitializeBounds(double bounds[6])
Set the bounds to an uninitialized state.
static void RGBToHSV(double r, double g, double b, double *h, double *s, double *v)
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
static void Outer(const float a[3], const float b[3], float c[3][3])
Outer product of two 3-vectors (float version).
static int * BeginCombination(int m, int n)
Start iterating over "m choose n" objects.
static double Norm(const double v[3])
Compute the norm of 3-vector (double version).
static void RoundDoubleToIntegralIfNecessary(double val, OutT *ret)
Round a double to type OutT if OutT is integral, otherwise simply clamp the value to the output range...
static void RotateVectorByWXYZ(const float v[3], const float q[4], float r[3])
rotate a vector by WXYZ using // https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
static bool IsPowerOfTwo(vtkTypeUInt64 x)
Returns true if integer is a power of two.
static void Invert3x3(const float A[3][3], float AI[3][3])
Invert a 3x3 matrix.
static float Normalize(float v[3])
Normalize (in place) a 3-vector.
static void Transpose3x3(const double A[3][3], double AT[3][3])
Transpose a 3x3 matrix.
static ReturnTypeT SquaredNorm(const TupleRangeT &v)
Compute the squared norm of a 3-vector.
static double Determinant3x3(const float A[3][3])
Return the determinant of a 3x3 matrix.
static float Dot2D(const float x[2], const float y[2])
Dot product of two 2-vectors.
ConvolutionMode
Support the convolution operations.
static void RotateVectorByNormalizedQuaternion(const float v[3], const float q[4], float r[3])
rotate a vector by a normalized quaternion using // https://en.wikipedia.org/wiki/Rodrigues%27_rotati...
static void RGBToHSV(const float rgb[3], float hsv[3])
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
static void Add(VectorT1 &&a, VectorT2 &&b, VectorT3 &c)
Addition of two 3-vectors (double version).
static void Orthogonalize3x3(const float A[3][3], float B[3][3])
Orthogonalize a 3x3 matrix and put the result in B.
static bool ProjectVector2D(const float a[2], const float b[2], float projection[2])
Compute the projection of 2D vector a on 2D vector b and returns the result in projection[2].
static vtkTypeBool SolveLinearSystemGEPP2x2(double a00, double a01, double a10, double a11, double b0, double b1, double &x0, double &x1)
Solve linear equation Ax = b using Gaussian Elimination with Partial Pivoting for a 2x2 system.
static vtkMatrixUtilities::ScalarTypeExtractor< MatrixT >::value_type Determinant(MatrixT &&M)
Computes the determinant of input square SizeT x SizeT matrix M.
static vtkTypeBool SolveLinearSystem(double **A, double *x, int size)
Solve linear equations Ax = b using Crout's method.
static void LabToRGB(const double lab[3], double rgb[3])
Convert color from the CIE-L*ab system to RGB.
static float Norm2D(const float x[2])
Compute the norm of a 2-vector.
static vtkTypeBool LUFactorLinearSystem(double **A, int *index, int size, double *tmpSize)
Thread safe version of LUFactorLinearSystem method.
static void LinearSolve3x3(const double A[3][3], const double x[3], double y[3])
Solve Ay = x for y and place the result in y.
static void XYZToLab(double x, double y, double z, double *L, double *a, double *b)
Convert Color from the CIE XYZ system to CIE-L*ab.
static void MultiplyScalar(float a[3], float s)
Multiplies a 3-vector by a scalar (float version).
static T Min(const T &a, const T &b)
Returns the minimum of the two arguments provided.
static void InvertMatrix(MatrixT1 &&M1, MatrixT2 &&M2)
Computes the inverse of input matrix M1 into M2.
static void Cross(VectorT1 &&a, VectorT2 &&b, VectorT3 &c)
Cross product of two 3-vectors.
static void MultiplyMatrix(MatrixT1 &&M1, MatrixT2 &&M2, MatrixT3 &&M3)
Multiply matrices such that M3 = M1 x M2.
static void Perpendiculars(const double v1[3], double v2[3], double v3[3], double theta)
Given a unit vector v1, find two unit vectors v2 and v3 such that v1 cross v2 = v3 (i....
static T ClampValue(const T &value, const T &min, const T &max)
Clamp some value against a range, return the result.
static vtkTypeBool SolveLeastSquares(int numberOfSamples, double **xt, int xOrder, double **yt, int yOrder, double **mt, int checkHomogeneous=1)
Solves for the least squares best fit matrix for the equation X'M' = Y'.
static void Identity3x3(double A[3][3])
Set A to the identity matrix.
static void LUFactor3x3(double A[3][3], int index[3])
LU Factorization of a 3x3 matrix.
static vtkTypeBool LUFactorLinearSystem(double **A, int *index, int size)
Factor linear equations Ax = b using LU decomposition into the form A = LU where L is a unit lower tr...
static void RGBToLab(double red, double green, double blue, double *L, double *a, double *b)
Convert color from the RGB system to CIE-L*ab.
static void MultiplyQuaternion(const float q1[4], const float q2[4], float q[4])
Multiply two quaternions.
static double GaussianWeight(double variance, double distanceFromMean)
Compute the amplitude of an unnormalized Gaussian function with mean=0 and specified variance.
static void ClampValues(const double *values, int nb_values, const double range[2], double *clamped_values)
Clamp some values against a range The method without 'clamped_values' will perform in-place clamping.
static void Transpose3x3(const float A[3][3], float AT[3][3])
Transpose a 3x3 matrix.
static double Distance2BetweenPoints2D(const double p1[2], const double p2[2])
Compute distance squared between two 2D points p1 and p2.
static vtkMatrixUtilities::ScalarTypeExtractor< VectorT >::value_type SquaredNorm(VectorT &&x)
Computes the dot product between 2 vectors x and y.
static void ClampValues(double *values, int nb_values, const double range[2])
Clamp some values against a range The method without 'clamped_values' will perform in-place clamping.
static int QuadraticRoot(double a, double b, double c, double min, double max, double *u)
find roots of ax^2+bx+c=0 in the interval min,max.
static void MultiplyMatrixWithVector(MatrixT &&M, VectorT1 &&X, VectorT2 &&Y)
Multiply matrix M with vector Y such that Y = M x X.
Park and Miller Sequence of pseudo random numbers.
represent and manipulate 3D points
Computes the portion of a dataset which is inside a selection.
Hold a reference to a vtkObjectBase instance.
void RoundDoubleToIntegralIfNecessary(double val, OutT *ret)
Template defining traits of native types used by VTK.
double vtkDeterminant3x3(const T A[3][3])
#define Distance2BetweenPoints2D(p1, p2)