VTK  9.4.20241117
vtkStreamTracer.h
Go to the documentation of this file.
1// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
2// SPDX-License-Identifier: BSD-3-Clause
191#ifndef vtkStreamTracer_h
192#define vtkStreamTracer_h
193
194#include "vtkFiltersFlowPathsModule.h" // For export macro
195#include "vtkPolyDataAlgorithm.h"
196
197#include "vtkDataSetAttributesFieldList.h" // Needed to identify common data arrays
198#include "vtkInitialValueProblemSolver.h" // Needed for constants
199
200VTK_ABI_NAMESPACE_BEGIN
203class vtkDataArray;
205class vtkDoubleArray;
206class vtkExecutive;
207class vtkGenericCell;
208class vtkIdList;
209class vtkIntArray;
210class vtkPoints;
211
212VTK_ABI_NAMESPACE_END
213#include <vector> // for std::vector
214
215// Helper struct to convert between different length scales.
216VTK_ABI_NAMESPACE_BEGIN
217struct VTKFILTERSFLOWPATHS_EXPORT vtkIntervalInformation
218{
219 double Interval;
220 int Unit;
221
222 static double ConvertToLength(double interval, int unit, double cellLength);
223 static double ConvertToLength(vtkIntervalInformation& interval, double cellLength);
224};
225
237 void* clientdata, vtkPoints* points, vtkDataArray* velocity, int integrationDirection);
238
239class VTKFILTERSFLOWPATHS_EXPORT vtkStreamTracer : public vtkPolyDataAlgorithm
240{
241public:
250
252
256 void PrintSelf(ostream& os, vtkIndent indent) override;
258
260
265 vtkSetVector3Macro(StartPosition, double);
266 vtkGetVector3Macro(StartPosition, double);
268
270
279
286
287 // The previously-supported TIME_UNIT is excluded in this current
288 // enumeration definition because the underlying step size is ALWAYS in
289 // arc length unit (LENGTH_UNIT) while the 'real' time interval (virtual
290 // for steady flows) that a particle actually takes to trave in a single
291 // step is obtained by dividing the arc length by the LOCAL speed. The
292 // overall elapsed time (i.e., the life span) of the particle is the sum
293 // of those individual step-wise time intervals. The arc-length-to-time
294 // conversion only occurs for vorticity computation and for generating a
295 // point data array named 'IntegrationTime'.
296 enum Units
297 {
298 LENGTH_UNIT = 1,
299 CELL_LENGTH_UNIT = 2
300 };
301
303 {
308 UNKNOWN
309 };
310
312 {
316 OUT_OF_LENGTH = 4,
317 OUT_OF_STEPS = 5,
318 STAGNATION = 6,
319 FIXED_REASONS_FOR_TERMINATION_COUNT
320 };
321
323
334 vtkGetObjectMacro(Integrator, vtkInitialValueProblemSolver);
335 void SetIntegratorType(int type);
337 void SetIntegratorTypeToRungeKutta2() { this->SetIntegratorType(RUNGE_KUTTA2); }
338 void SetIntegratorTypeToRungeKutta4() { this->SetIntegratorType(RUNGE_KUTTA4); }
339 void SetIntegratorTypeToRungeKutta45() { this->SetIntegratorType(RUNGE_KUTTA45); }
341
352
360
362
365 vtkSetMacro(MaximumPropagation, double);
366 vtkGetMacro(MaximumPropagation, double);
368
376 int GetIntegrationStepUnit() { return this->IntegrationStepUnit; }
377
379
386 vtkSetMacro(InitialIntegrationStep, double);
387 vtkGetMacro(InitialIntegrationStep, double);
389
391
397 vtkSetMacro(MinimumIntegrationStep, double);
398 vtkGetMacro(MinimumIntegrationStep, double);
400
402
408 vtkSetMacro(MaximumIntegrationStep, double);
409 vtkGetMacro(MaximumIntegrationStep, double);
411
413
416 vtkSetMacro(MaximumError, double);
417 vtkGetMacro(MaximumError, double);
419
421
429 vtkSetMacro(MaximumNumberOfSteps, vtkIdType);
430 vtkGetMacro(MaximumNumberOfSteps, vtkIdType);
432
434
438 vtkSetMacro(TerminalSpeed, double);
439 vtkGetMacro(TerminalSpeed, double);
441
443
447 vtkGetMacro(SurfaceStreamlines, bool);
448 vtkSetMacro(SurfaceStreamlines, bool);
449 vtkBooleanMacro(SurfaceStreamlines, bool);
451
452 enum
453 {
456 BOTH
457 };
458
459 enum
460 {
462 INTERPOLATOR_WITH_CELL_LOCATOR
463 };
464
466
473 vtkSetClampMacro(IntegrationDirection, int, FORWARD, BOTH);
474 vtkGetMacro(IntegrationDirection, int);
475 void SetIntegrationDirectionToForward() { this->SetIntegrationDirection(FORWARD); }
476 void SetIntegrationDirectionToBackward() { this->SetIntegrationDirection(BACKWARD); }
477 void SetIntegrationDirectionToBoth() { this->SetIntegrationDirection(BOTH); }
479
481
486 vtkSetMacro(ComputeVorticity, bool);
487 vtkGetMacro(ComputeVorticity, bool);
489
491
495 vtkSetMacro(RotationScale, double);
496 vtkGetMacro(RotationScale, double);
498
509
519 void SetInterpolatorType(int interpType);
520
522
526 vtkGetMacro(ForceSerialExecution, bool);
527 vtkSetMacro(ForceSerialExecution, bool);
528 vtkBooleanMacro(ForceSerialExecution, bool);
530
540 CustomTerminationCallbackType callback, void* clientdata, int reasonForTermination);
541
551 double& step, double& minStep, double& maxStep, int direction, double cellLength);
552
554
558 void GenerateNormals(vtkPolyData* output, double* firstNormal, const char* vecName);
560 vtkGenericCell* cell, double pcoords[3], vtkDoubleArray* cellVectors, double vorticity[3]);
562
564
574 vtkSetMacro(UseLocalSeedSource, bool);
575 vtkGetMacro(UseLocalSeedSource, bool);
576 vtkBooleanMacro(UseLocalSeedSource, bool);
578
579protected:
582
583 // Create a default executive.
585
586 // hide the superclass' AddInput() from the user and the compiler
588 {
589 vtkErrorMacro(<< "AddInput() must be called with a vtkDataSet not a vtkDataObject.");
590 }
591
594
595 void Integrate(vtkPointData* inputData, vtkPolyData* output, vtkDataArray* seedSource,
596 vtkIdList* seedIds, vtkIntArray* integrationDirections,
597 vtkAbstractInterpolatedVelocityField* func, int maxCellSize, int vecType,
598 const char* vecFieldName, double& propagation, vtkIdType& numSteps, double& integrationTime,
599 std::vector<CustomTerminationCallbackType>& customTerminationCallback,
600 std::vector<void*>& customTerminationClientData, std::vector<int>& customReasonForTermination);
601
602 double SimpleIntegrate(double seed[3], double lastPoint[3], double stepSize,
605
607
608 // starting from global x-y-z position
609 double StartPosition[3];
610
611 static const double EPSILON;
613
614 // Used by subclasses, leave alone
616
621
623 void InitializeSeeds(vtkDataArray*& seeds, vtkIdList*& seedIds,
624 vtkIntArray*& integrationDirections, vtkDataSet* source);
625
628
629 // Prototype showing the integrator type to be set by the user.
631
634
637
638 // Compute streamlines only on surface.
640
642
643 // These are used to manage complex input types such as
644 // multiblock / composite datasets. Basically the filter input is
645 // converted to a composite dataset, and the point data attributes
646 // are intersected to produce a common set of output data arrays.
647 vtkCompositeDataSet* InputData; // convert input data to composite dataset
648 vtkDataSetAttributesFieldList InputPD; // intersect attributes of all datasets
649 bool
650 HasMatchingPointAttributes; // does the point data in the multiblocks have the same attributes?
651
652 // Control execution as serial or threaded
654 bool SerialExecution; // internal use to combine information
655
656 std::vector<CustomTerminationCallbackType> CustomTerminationCallback;
657 std::vector<void*> CustomTerminationClientData;
659
660 // Only relevant for this derived parallel version of vtkStreamTracer,
661 // but needs to be defined in this class to have a uniform interface
662 // between this class and the parallel override vtkPStreamTracer
664
665 friend class PStreamTracerUtils;
666
667private:
668 vtkStreamTracer(const vtkStreamTracer&) = delete;
669 void operator=(const vtkStreamTracer&) = delete;
670};
671
672VTK_ABI_NAMESPACE_END
673#endif
An abstract class for obtaining the interpolated velocity values at a point.
Proxy object to connect input/output ports.
abstract superclass for composite (multi-block or AMR) datasets
abstract superclass for arrays of numeric data
general representation of visualization data
helps manage arrays from multiple vtkDataSetAttributes.
represent and manipulate attribute data in a dataset
abstract class to specify dataset behavior
Definition vtkDataSet.h:166
dynamic, self-adjusting array of double
Superclass for all pipeline executives in VTK.
provides thread-safe access to cells
list of point or cell ids
Definition vtkIdList.h:133
a simple class to control print indentation
Definition vtkIndent.h:108
Store zero or more vtkInformation instances.
Store vtkAlgorithm input/output information.
Integrate a set of ordinary differential equations (initial value problem) in time.
dynamic, self-adjusting array of int
represent and manipulate point attribute data
represent and manipulate 3D points
Definition vtkPoints.h:139
Superclass for algorithms that produce only polydata as output.
concrete dataset represents vertices, lines, polygons, and triangle strips
Streamline generator.
void SetIntegratorTypeToRungeKutta45()
Set/get the integrator type to be used for streamline generation.
int FillInputPortInformation(int, vtkInformation *) override
Fill the input port information objects for this algorithm.
int SetupOutput(vtkInformation *inInfo, vtkInformation *outInfo)
std::vector< void * > CustomTerminationClientData
vtkDataSetAttributesFieldList InputPD
void SetSourceData(vtkDataSet *source)
Specify the source object used to generate starting points (seeds).
vtkDataSet * GetSource()
Specify the source object used to generate starting points (seeds).
double InitialIntegrationStep
vtkAbstractInterpolatedVelocityField * InterpolatorPrototype
void SetInterpolatorTypeToCellLocator()
Set the velocity field interpolator type to one that uses a cell locator to perform spatial searching...
void PrintSelf(ostream &os, vtkIndent indent) override
Standard methods to obtain type information and print object state.
void CalculateVorticity(vtkGenericCell *cell, double pcoords[3], vtkDoubleArray *cellVectors, double vorticity[3])
Helper methods to generate normals on streamlines.
double MinimumIntegrationStep
void SetIntegratorTypeToRungeKutta4()
Set/get the integrator type to be used for streamline generation.
void SetIntegrator(vtkInitialValueProblemSolver *)
Set/get the integrator type to be used for streamline generation.
void SetSourceConnection(vtkAlgorithmOutput *algOutput)
Specify the source object used to generate starting points (seeds).
std::vector< int > CustomReasonForTermination
int CheckInputs(vtkAbstractInterpolatedVelocityField *&func, int *maxCellSize)
void ConvertIntervals(double &step, double &minStep, double &maxStep, int direction, double cellLength)
The following methods should not be called by the user.
void GenerateNormals(vtkPolyData *output, double *firstNormal, const char *vecName)
Helper methods to generate normals on streamlines.
static const double EPSILON
vtkIdType MaximumNumberOfSteps
void SetIntegrationDirectionToForward()
Specify whether the streamline is integrated in the upstream or downstream direction,...
std::vector< CustomTerminationCallbackType > CustomTerminationCallback
static vtkStreamTracer * New()
Construct the object to start from position (0,0,0), with forward integration, terminal speed 1....
vtkCompositeDataSet * InputData
@ INTERPOLATOR_WITH_DATASET_POINT_LOCATOR
void SetInterpolatorType(int interpType)
Set the type of the velocity field interpolator to determine whether INTERPOLATOR_WITH_DATASET_POINT_...
double MaximumIntegrationStep
int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *) override
This is called by the superclass.
vtkExecutive * CreateDefaultExecutive() override
Create a default executive.
void Integrate(vtkPointData *inputData, vtkPolyData *output, vtkDataArray *seedSource, vtkIdList *seedIds, vtkIntArray *integrationDirections, vtkAbstractInterpolatedVelocityField *func, int maxCellSize, int vecType, const char *vecFieldName, double &propagation, vtkIdType &numSteps, double &integrationTime, std::vector< CustomTerminationCallbackType > &customTerminationCallback, std::vector< void * > &customTerminationClientData, std::vector< int > &customReasonForTermination)
void SetIntegrationDirectionToBackward()
Specify whether the streamline is integrated in the upstream or downstream direction,...
void SetInterpolatorTypeToDataSetPointLocator()
Set the velocity field interpolator type to one that uses a point locator to perform local spatial se...
int GetIntegratorType()
Set/get the integrator type to be used for streamline generation.
void AddCustomTerminationCallback(CustomTerminationCallbackType callback, void *clientdata, int reasonForTermination)
Adds a custom termination callback.
void InitializeSeeds(vtkDataArray *&seeds, vtkIdList *&seedIds, vtkIntArray *&integrationDirections, vtkDataSet *source)
void SetIntegratorTypeToRungeKutta2()
Set/get the integrator type to be used for streamline generation.
void SetIntegrationDirectionToBoth()
Specify whether the streamline is integrated in the upstream or downstream direction,...
double SimpleIntegrate(double seed[3], double lastPoint[3], double stepSize, vtkAbstractInterpolatedVelocityField *func)
~vtkStreamTracer() override
void AddInput(vtkDataObject *)
vtkInitialValueProblemSolver * Integrator
void SetInterpolatorPrototype(vtkAbstractInterpolatedVelocityField *ivf)
The object used to interpolate the velocity field during integration is of the same class as this pro...
void SetIntegrationStepUnit(int unit)
Specify a uniform integration step unit for MinimumIntegrationStep, InitialIntegrationStep,...
void SetIntegratorType(int type)
Set/get the integrator type to be used for streamline generation.
static double ConvertToLength(double interval, int unit, double cellLength)
static double ConvertToLength(vtkIntervalInformation &interval, double cellLength)
boost::graph_traits< vtkGraph * >::vertex_descriptor source(boost::graph_traits< vtkGraph * >::edge_descriptor e, vtkGraph *)
bool(* CustomTerminationCallbackType)(void *clientdata, vtkPoints *points, vtkDataArray *velocity, int integrationDirection)
Used to specify custom conditions which are evaluated to determine whether a streamline should be ter...
int vtkIdType
Definition vtkType.h:315