#include <vtkQuadraticWedge.h>
vtkQuadraticWedge is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 15-node isoparametric parabolic wedge. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node. The ordering of the fifteen points defining the cell is point ids (0-5,6-14) where point ids 0-5 are the six corner vertices of the wedge; followed by nine midedge nodes (6-14). Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3), (1,4), (2,5).
Definition at line 47 of file vtkQuadraticWedge.h.
static void | InterpolationFunctions (double pcoords[3], double weights[15]) |
static void | InterpolationDerivs (double pcoords[3], double derivs[45]) |
static int * | GetEdgeArray (int edgeId) |
static int * | GetFaceArray (int faceId) |
virtual void | InterpolateFunctions (double pcoords[3], double weights[15]) |
virtual void | InterpolateDerivs (double pcoords[3], double derivs[45]) |
Public Types | |
typedef vtkNonLinearCell | Superclass |
Public Member Functions | |
virtual const char * | GetClassName () |
virtual int | IsA (const char *type) |
void | PrintSelf (ostream &os, vtkIndent indent) |
int | CellBoundary (int subId, double pcoords[3], vtkIdList *pts) |
void | Contour (double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) |
int | EvaluatePosition (double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) |
void | EvaluateLocation (int &subId, double pcoords[3], double x[3], double *weights) |
int | Triangulate (int index, vtkIdList *ptIds, vtkPoints *pts) |
void | Derivatives (int subId, double pcoords[3], double *values, int dim, double *derivs) |
virtual double * | GetParametricCoords () |
int | GetParametricCenter (double pcoords[3]) |
void | JacobianInverse (double pcoords[3], double **inverse, double derivs[45]) |
int | GetCellType () |
int | GetCellDimension () |
int | GetNumberOfEdges () |
int | GetNumberOfFaces () |
vtkCell * | GetEdge (int edgeId) |
vtkCell * | GetFace (int faceId) |
void | Clip (double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) |
int | IntersectWithLine (double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) |
Static Public Member Functions | |
static vtkQuadraticWedge * | New () |
static int | IsTypeOf (const char *type) |
static vtkQuadraticWedge * | SafeDownCast (vtkObject *o) |
Protected Member Functions | |
vtkQuadraticWedge () | |
~vtkQuadraticWedge () | |
void | Subdivide (vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars) |
Protected Attributes | |
vtkQuadraticEdge * | Edge |
vtkQuadraticTriangle * | TriangleFace |
vtkQuadraticQuad * | Face |
vtkWedge * | Wedge |
vtkPointData * | PointData |
vtkCellData * | CellData |
vtkDoubleArray * | CellScalars |
vtkDoubleArray * | Scalars |
vtkQuadraticWedge::vtkQuadraticWedge | ( | ) | [protected] |
vtkQuadraticWedge::~vtkQuadraticWedge | ( | ) | [protected] |
static vtkQuadraticWedge* vtkQuadraticWedge::New | ( | ) | [static] |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
Reimplemented from vtkObject.
virtual const char* vtkQuadraticWedge::GetClassName | ( | ) | [virtual] |
Reimplemented from vtkNonLinearCell.
static int vtkQuadraticWedge::IsTypeOf | ( | const char * | name | ) | [static] |
Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeRevisionMacro found in vtkSetGet.h.
Reimplemented from vtkNonLinearCell.
virtual int vtkQuadraticWedge::IsA | ( | const char * | name | ) | [virtual] |
Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeRevisionMacro found in vtkSetGet.h.
Reimplemented from vtkNonLinearCell.
static vtkQuadraticWedge* vtkQuadraticWedge::SafeDownCast | ( | vtkObject * | o | ) | [static] |
Reimplemented from vtkNonLinearCell.
void vtkQuadraticWedge::PrintSelf | ( | ostream & | os, | |
vtkIndent | indent | |||
) | [virtual] |
Methods invoked by print to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from vtkNonLinearCell.
int vtkQuadraticWedge::GetCellType | ( | ) | [inline, virtual] |
Implement the vtkCell API. See the vtkCell API for descriptions of these methods.
Implements vtkCell.
Definition at line 57 of file vtkQuadraticWedge.h.
int vtkQuadraticWedge::GetCellDimension | ( | ) | [inline, virtual] |
Implement the vtkCell API. See the vtkCell API for descriptions of these methods.
Implements vtkCell.
Definition at line 58 of file vtkQuadraticWedge.h.
int vtkQuadraticWedge::GetNumberOfEdges | ( | ) | [inline, virtual] |
Implement the vtkCell API. See the vtkCell API for descriptions of these methods.
Implements vtkCell.
Definition at line 59 of file vtkQuadraticWedge.h.
int vtkQuadraticWedge::GetNumberOfFaces | ( | ) | [inline, virtual] |
Implement the vtkCell API. See the vtkCell API for descriptions of these methods.
Implements vtkCell.
Definition at line 60 of file vtkQuadraticWedge.h.
vtkCell* vtkQuadraticWedge::GetEdge | ( | int | edgeId | ) | [virtual] |
vtkCell* vtkQuadraticWedge::GetFace | ( | int | faceId | ) | [virtual] |
int vtkQuadraticWedge::CellBoundary | ( | int | subId, | |
double | pcoords[3], | |||
vtkIdList * | pts | |||
) | [virtual] |
Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell.
Implements vtkCell.
void vtkQuadraticWedge::Contour | ( | double | value, | |
vtkDataArray * | cellScalars, | |||
vtkPointLocator * | locator, | |||
vtkCellArray * | verts, | |||
vtkCellArray * | lines, | |||
vtkCellArray * | polys, | |||
vtkPointData * | inPd, | |||
vtkPointData * | outPd, | |||
vtkCellData * | inCd, | |||
vtkIdType | cellId, | |||
vtkCellData * | outCd | |||
) | [virtual] |
Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is NULL, then no interpolation is performed. Also, if the output cell data is non-NULL, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)
Implements vtkCell.
int vtkQuadraticWedge::EvaluatePosition | ( | double | x[3], | |
double * | closestPoint, | |||
int & | subId, | |||
double | pcoords[3], | |||
double & | dist2, | |||
double * | weights | |||
) | [virtual] |
Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.
Implements vtkCell.
void vtkQuadraticWedge::EvaluateLocation | ( | int & | subId, | |
double | pcoords[3], | |||
double | x[3], | |||
double * | weights | |||
) | [virtual] |
Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.)
Implements vtkCell.
Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell.
Implements vtkCell.
void vtkQuadraticWedge::Derivatives | ( | int | subId, | |
double | pcoords[3], | |||
double * | values, | |||
int | dim, | |||
double * | derivs | |||
) | [virtual] |
Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).
Implements vtkCell.
virtual double* vtkQuadraticWedge::GetParametricCoords | ( | ) | [virtual] |
Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-NULL pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell.
Reimplemented from vtkCell.
void vtkQuadraticWedge::Clip | ( | double | value, | |
vtkDataArray * | cellScalars, | |||
vtkPointLocator * | locator, | |||
vtkCellArray * | tetras, | |||
vtkPointData * | inPd, | |||
vtkPointData * | outPd, | |||
vtkCellData * | inCd, | |||
vtkIdType | cellId, | |||
vtkCellData * | outCd, | |||
int | insideOut | |||
) | [virtual] |
Clip this quadratic hexahedron using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron.
Implements vtkCell.
int vtkQuadraticWedge::IntersectWithLine | ( | double | p1[3], | |
double | p2[3], | |||
double | tol, | |||
double & | t, | |||
double | x[3], | |||
double | pcoords[3], | |||
int & | subId | |||
) | [virtual] |
Line-edge intersection. Intersection has to occur within [0,1] parametric coordinates and with specified tolerance.
Implements vtkCell.
int vtkQuadraticWedge::GetParametricCenter | ( | double | pcoords[3] | ) | [inline, virtual] |
Return the center of the quadratic wedge in parametric coordinates.
Reimplemented from vtkCell.
Definition at line 155 of file vtkQuadraticWedge.h.
static void vtkQuadraticWedge::InterpolationFunctions | ( | double | pcoords[3], | |
double | weights[15] | |||
) | [static] |
static void vtkQuadraticWedge::InterpolationDerivs | ( | double | pcoords[3], | |
double | derivs[45] | |||
) | [static] |
virtual void vtkQuadraticWedge::InterpolateFunctions | ( | double | pcoords[3], | |
double | weights[15] | |||
) | [inline, virtual] |
Definition at line 113 of file vtkQuadraticWedge.h.
virtual void vtkQuadraticWedge::InterpolateDerivs | ( | double | pcoords[3], | |
double | derivs[45] | |||
) | [inline, virtual] |
Definition at line 117 of file vtkQuadraticWedge.h.
static int* vtkQuadraticWedge::GetEdgeArray | ( | int | edgeId | ) | [static] |
static int* vtkQuadraticWedge::GetFaceArray | ( | int | faceId | ) | [static] |
void vtkQuadraticWedge::JacobianInverse | ( | double | pcoords[3], | |
double ** | inverse, | |||
double | derivs[45] | |||
) |
Given parametric coordinates compute inverse Jacobian transformation matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation function derivatives.
void vtkQuadraticWedge::Subdivide | ( | vtkPointData * | inPd, | |
vtkCellData * | inCd, | |||
vtkIdType | cellId, | |||
vtkDataArray * | cellScalars | |||
) | [protected] |
vtkQuadraticEdge* vtkQuadraticWedge::Edge [protected] |
Definition at line 137 of file vtkQuadraticWedge.h.
vtkQuadraticTriangle* vtkQuadraticWedge::TriangleFace [protected] |
Definition at line 138 of file vtkQuadraticWedge.h.
vtkQuadraticQuad* vtkQuadraticWedge::Face [protected] |
Definition at line 139 of file vtkQuadraticWedge.h.
vtkWedge* vtkQuadraticWedge::Wedge [protected] |
Definition at line 140 of file vtkQuadraticWedge.h.
vtkPointData* vtkQuadraticWedge::PointData [protected] |
Definition at line 141 of file vtkQuadraticWedge.h.
vtkCellData* vtkQuadraticWedge::CellData [protected] |
Definition at line 142 of file vtkQuadraticWedge.h.
vtkDoubleArray* vtkQuadraticWedge::CellScalars [protected] |
Definition at line 143 of file vtkQuadraticWedge.h.
vtkDoubleArray* vtkQuadraticWedge::Scalars [protected] |
Definition at line 144 of file vtkQuadraticWedge.h.