VTK  9.4.20241117
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
vtkCell Class Referenceabstract

abstract class to specify cell behavior More...

#include <vtkCell.h>

Inheritance diagram for vtkCell:
[legend]
Collaboration diagram for vtkCell:
[legend]

Public Types

typedef vtkObject Superclass
 

Public Member Functions

virtual vtkTypeBool IsA (const char *type)
 Return 1 if this class is the same type of (or a subclass of) the named class.
 
vtkCellNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses.
 
void Initialize (int npts, const vtkIdType *pts, vtkPoints *p)
 Initialize cell from outside with point ids and point coordinates specified.
 
void Initialize (int npts, vtkPoints *p)
 Initialize the cell with point coordinates specified.
 
virtual void ShallowCopy (vtkCell *c)
 Copy this cell by reference counting the internal data structures.
 
virtual void DeepCopy (vtkCell *c)
 Copy this cell by completely copying internal data structures.
 
virtual int GetCellType ()=0
 Return the type of cell.
 
virtual int GetCellDimension ()=0
 Return the topological dimensional of the cell (0,1,2, or 3).
 
virtual int IsLinear ()
 Non-linear cells require special treatment beyond the usual cell type and connectivity list information.
 
virtual int RequiresInitialization ()
 Some cells require initialization prior to access.
 
virtual void Initialize ()
 
virtual int IsExplicitCell ()
 Explicit cells require additional representational information beyond the usual cell type and connectivity list information.
 
virtual int RequiresExplicitFaceRepresentation ()
 Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).
 
virtual void SetFaces (vtkIdType *vtkNotUsed(faces))
 
virtual vtkIdTypeGetFaces ()
 
vtkPointsGetPoints ()
 Get the point coordinates for the cell.
 
vtkIdType GetNumberOfPoints () const
 Return the number of points in the cell.
 
virtual int GetNumberOfEdges ()=0
 Return the number of edges in the cell.
 
virtual int GetNumberOfFaces ()=0
 Return the number of faces in the cell.
 
vtkIdListGetPointIds ()
 Return the list of point ids defining the cell.
 
vtkIdType GetPointId (int ptId)
 For cell point i, return the actual point id.
 
virtual vtkCellGetEdge (int edgeId)=0
 Return the edge cell from the edgeId of the cell.
 
virtual vtkCellGetFace (int faceId)=0
 Return the face cell from the faceId of the cell.
 
virtual int CellBoundary (int subId, const double pcoords[3], vtkIdList *pts)=0
 Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell.
 
virtual int EvaluatePosition (const double x[3], double closestPoint[3], int &subId, double pcoords[3], double &dist2, double weights[])=0
 Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell.
 
virtual void EvaluateLocation (int &subId, const double pcoords[3], double x[3], double *weights)=0
 Determine global coordinate (x[3]) from subId and parametric coordinates.
 
virtual void Contour (double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)=0
 Generate contouring primitives.
 
virtual void Clip (double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut)=0
 Cut (or clip) the cell based on the input cellScalars and the specified value.
 
virtual int Inflate (double dist)
 Inflates the cell.
 
virtual double ComputeBoundingSphere (double center[3]) const
 Computes the bounding sphere of the cell.
 
virtual int IntersectWithLine (const double p1[3], const double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)=0
 Intersect with a ray.
 
virtual int Triangulate (int index, vtkIdList *ptIds, vtkPoints *pts)
 Generate simplices of proper dimension.
 
virtual int TriangulateIds (int index, vtkIdList *ptIds)
 Generate simplices of proper dimension.
 
virtual int TriangulateLocalIds (int index, vtkIdList *ptIds)=0
 Generate simplices of proper dimension.
 
virtual void Derivatives (int subId, const double pcoords[3], const double *values, int dim, double *derivs)=0
 Compute derivatives given cell subId and parametric coordinates.
 
void GetBounds (double bounds[6])
 Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax).
 
double * GetBounds ()
 Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax).
 
double GetLength2 ()
 Compute Length squared of cell (i.e., bounding box diagonal squared).
 
virtual int GetParametricCenter (double pcoords[3])
 Return center of the cell in parametric coordinates.
 
virtual double GetParametricDistance (const double pcoords[3])
 Return the distance of the parametric coordinate provided to the cell.
 
virtual int IsPrimaryCell ()
 Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet).
 
virtual double * GetParametricCoords ()
 Return a contiguous array of parametric coordinates of the points defining this cell.
 
virtual void InterpolateFunctions (const double vtkNotUsed(pcoords)[3], double *vtkNotUsed(weight))
 Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level.
 
virtual void InterpolateDerivs (const double vtkNotUsed(pcoords)[3], double *vtkNotUsed(derivs))
 
virtual int IntersectWithCell (vtkCell *other, double tol=0.0)
 Intersects with an other cell.
 
virtual int IntersectWithCell (vtkCell *other, const vtkBoundingBox &boudingBox, const vtkBoundingBox &otherBoundingBox, double tol=0.0)
 Intersects with an other cell.
 
- Public Member Functions inherited from vtkObject
 vtkBaseTypeMacro (vtkObject, vtkObjectBase)
 
virtual void DebugOn ()
 Turn debugging output on.
 
virtual void DebugOff ()
 Turn debugging output off.
 
bool GetDebug ()
 Get the value of the debug flag.
 
void SetDebug (bool debugFlag)
 Set the value of the debug flag.
 
virtual void Modified ()
 Update the modification time for this object.
 
virtual vtkMTimeType GetMTime ()
 Return this object's modified time.
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses.
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
vtkTypeBool HasObserver (unsigned long event)
 
vtkTypeBool HasObserver (const char *event)
 
vtkTypeBool InvokeEvent (unsigned long event)
 
vtkTypeBool InvokeEvent (const char *event)
 
std::string GetObjectDescription () const override
 The object description printed in messages and PrintSelf output.
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkCommandGetCommand (unsigned long tag)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObserver (vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Allow user to set the AbortFlagOn() with the return value of the callback method.
 
vtkTypeBool InvokeEvent (unsigned long event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
vtkTypeBool InvokeEvent (const char *event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
virtual void SetObjectName (const std::string &objectName)
 Set/get the name of this object for reporting purposes.
 
virtual std::string GetObjectName () const
 Set/get the name of this object for reporting purposes.
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 Return the class name as a string.
 
virtual std::string GetObjectDescription () const
 The object description printed in messages and PrintSelf output.
 
virtual vtkTypeBool IsA (const char *name)
 Return 1 if this class is the same type of (or a subclass of) the named class.
 
virtual vtkIdType GetNumberOfGenerationsFromBase (const char *name)
 Given the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
virtual void Delete ()
 Delete a VTK object.
 
virtual void FastDelete ()
 Delete a reference to this object.
 
void InitializeObjectBase ()
 
void Print (ostream &os)
 Print an object to an ostream.
 
void Register (vtkObjectBase *o)
 Increase the reference count (mark as used by another object).
 
virtual void UnRegister (vtkObjectBase *o)
 Decrease the reference count (release by another object).
 
int GetReferenceCount ()
 Return the current reference count of this object.
 
void SetReferenceCount (int)
 Sets the reference count.
 
bool GetIsInMemkind () const
 A local state flag that remembers whether this object lives in the normal or extended memory space.
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 
virtual bool UsesGarbageCollector () const
 Indicate whether the class uses vtkGarbageCollector or not.
 

Static Public Member Functions

static vtkTypeBool IsTypeOf (const char *type)
 
static vtkCellSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkObject
static vtkObjectNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void BreakOnError ()
 This method is called when vtkErrorMacro executes.
 
static void SetGlobalWarningDisplay (vtkTypeBool val)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOn ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOff ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static vtkTypeBool GetGlobalWarningDisplay ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
- Static Public Member Functions inherited from vtkObjectBase
static vtkTypeBool IsTypeOf (const char *name)
 Return 1 if this class type is the same type of (or a subclass of) the named class.
 
static vtkIdType GetNumberOfGenerationsFromBaseType (const char *name)
 Given a the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
static vtkObjectBaseNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void SetMemkindDirectory (const char *directoryname)
 The name of a directory, ideally mounted -o dax, to memory map an extended memory space within.
 
static bool GetUsingMemkind ()
 A global state flag that controls whether vtkObjects are constructed in the usual way (the default) or within the extended memory space.
 

Public Attributes

vtkPointsPoints
 
vtkIdListPointIds
 

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 
 vtkCell ()
 
 ~vtkCell () override
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
 ~vtkObject () override
 
void RegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=nullptr)
 These methods allow a command to exclusively grab all events.
 
void InternalReleaseFocus ()
 These methods allow a command to exclusively grab all events.
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
virtual void RegisterInternal (vtkObjectBase *, vtkTypeBool check)
 
virtual void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check)
 
virtual void ReportReferences (vtkGarbageCollector *)
 
virtual void ObjectFinalize ()
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

double Bounds [6]
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
std::string ObjectName
 
- Protected Attributes inherited from vtkObjectBase
std::atomic< int32_t > ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 

Additional Inherited Members

- Static Protected Member Functions inherited from vtkObjectBase
static vtkMallocingFunction GetCurrentMallocFunction ()
 
static vtkReallocingFunction GetCurrentReallocFunction ()
 
static vtkFreeingFunction GetCurrentFreeFunction ()
 
static vtkFreeingFunction GetAlternateFreeFunction ()
 

Detailed Description

abstract class to specify cell behavior

vtkCell is an abstract class that specifies the interfaces for data cells. Data cells are simple topological elements like points, lines, polygons, and tetrahedra of which visualization datasets are composed. In some cases visualization datasets may explicitly represent cells (e.g., vtkPolyData, vtkUnstructuredGrid), and in some cases, the datasets are implicitly composed of cells (e.g., vtkStructuredPoints).

Warning
The #define VTK_CELL_SIZE is a parameter used to construct cells and provide a general guideline for controlling object execution. This parameter is not a hard boundary: you can create cells with more points.
See also
vtkHexahedron vtkLine vtkPixel vtkPolyLine vtkPolyVertex vtkPolygon vtkQuad vtkTetra vtkTriangle vtkTriangleStrip vtkVertex vtkVoxel vtkWedge vtkPyramid
Online Examples:

Tests:
vtkCell (Tests)

Definition at line 129 of file vtkCell.h.

Member Typedef Documentation

◆ Superclass

Definition at line 132 of file vtkCell.h.

Constructor & Destructor Documentation

◆ vtkCell()

vtkCell::vtkCell ( )
protected

◆ ~vtkCell()

vtkCell::~vtkCell ( )
overrideprotected

Member Function Documentation

◆ IsTypeOf()

static vtkTypeBool vtkCell::IsTypeOf ( const char *  type)
static

◆ IsA()

virtual vtkTypeBool vtkCell::IsA ( const char *  name)
virtual

◆ SafeDownCast()

static vtkCell * vtkCell::SafeDownCast ( vtkObjectBase o)
static

◆ NewInstanceInternal()

virtual vtkObjectBase * vtkCell::NewInstanceInternal ( ) const
protectedvirtual

◆ NewInstance()

vtkCell * vtkCell::NewInstance ( ) const

◆ PrintSelf()

void vtkCell::PrintSelf ( ostream &  os,
vtkIndent  indent 
)
overridevirtual

◆ Initialize() [1/3]

void vtkCell::Initialize ( int  npts,
const vtkIdType pts,
vtkPoints p 
)

Initialize cell from outside with point ids and point coordinates specified.

◆ Initialize() [2/3]

void vtkCell::Initialize ( int  npts,
vtkPoints p 
)

Initialize the cell with point coordinates specified.

Note that this simplified version of Initialize() assumes that the point ids are simply the indices into the supplied points array. Make sure that the ordering of the points is consistent with the definition of the cell.

◆ ShallowCopy()

virtual void vtkCell::ShallowCopy ( vtkCell c)
virtual

Copy this cell by reference counting the internal data structures.

This is safe if you want a "read-only" copy. If you modify the cell you might wish to use DeepCopy().

Reimplemented in vtkGenericCell, and vtkPolyhedron.

◆ DeepCopy()

virtual void vtkCell::DeepCopy ( vtkCell c)
virtual

Copy this cell by completely copying internal data structures.

This is slower but safer than ShallowCopy().

Reimplemented in vtkGenericCell, and vtkPolyhedron.

◆ GetCellType()

virtual int vtkCell::GetCellType ( )
pure virtual

◆ GetCellDimension()

virtual int vtkCell::GetCellDimension ( )
pure virtual

◆ IsLinear()

virtual int vtkCell::IsLinear ( )
inlinevirtual

Non-linear cells require special treatment beyond the usual cell type and connectivity list information.

Most cells in VTK are implicit cells.

Reimplemented in vtkGenericCell, and vtkNonLinearCell.

Definition at line 177 of file vtkCell.h.

◆ RequiresInitialization()

virtual int vtkCell::RequiresInitialization ( )
inlinevirtual

Some cells require initialization prior to access.

For example, they may have to triangulate themselves or set up internal data structures.

Reimplemented in vtkConvexPointSet, vtkGenericCell, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, and vtkPolyhedron.

Definition at line 183 of file vtkCell.h.

◆ Initialize() [3/3]

virtual void vtkCell::Initialize ( )
inlinevirtual

◆ IsExplicitCell()

virtual int vtkCell::IsExplicitCell ( )
inlinevirtual

Explicit cells require additional representational information beyond the usual cell type and connectivity list information.

Most cells in VTK are implicit cells.

Definition at line 191 of file vtkCell.h.

◆ RequiresExplicitFaceRepresentation()

virtual int vtkCell::RequiresExplicitFaceRepresentation ( )
inlinevirtual

Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).

Reimplemented in vtkGenericCell, and vtkPolyhedron.

Definition at line 198 of file vtkCell.h.

◆ SetFaces()

virtual void vtkCell::SetFaces ( vtkIdType vtkNotUsedfaces)
inlinevirtual

Definition at line 201 of file vtkCell.h.

◆ GetFaces()

virtual vtkIdType * vtkCell::GetFaces ( )
inlinevirtual

Reimplemented in vtkGenericCell, and vtkPolyhedron.

Definition at line 203 of file vtkCell.h.

◆ GetPoints()

vtkPoints * vtkCell::GetPoints ( )
inline

Get the point coordinates for the cell.

Definition at line 208 of file vtkCell.h.

◆ GetNumberOfPoints()

vtkIdType vtkCell::GetNumberOfPoints ( ) const
inline

Return the number of points in the cell.

Definition at line 213 of file vtkCell.h.

◆ GetNumberOfEdges()

virtual int vtkCell::GetNumberOfEdges ( )
pure virtual

◆ GetNumberOfFaces()

virtual int vtkCell::GetNumberOfFaces ( )
pure virtual

◆ GetPointIds()

vtkIdList * vtkCell::GetPointIds ( )
inline

Return the list of point ids defining the cell.

Definition at line 228 of file vtkCell.h.

◆ GetPointId()

vtkIdType vtkCell::GetPointId ( int  ptId)
inline

For cell point i, return the actual point id.

Definition at line 233 of file vtkCell.h.

◆ GetEdge()

virtual vtkCell * vtkCell::GetEdge ( int  edgeId)
pure virtual

◆ GetFace()

virtual vtkCell * vtkCell::GetFace ( int  faceId)
pure virtual

◆ CellBoundary()

virtual int vtkCell::CellBoundary ( int  subId,
const double  pcoords[3],
vtkIdList pts 
)
pure virtual

◆ EvaluatePosition()

virtual int vtkCell::EvaluatePosition ( const double  x[3],
double  closestPoint[3],
int &  subId,
double  pcoords[3],
double &  dist2,
double  weights[] 
)
pure virtual

Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell.

(The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.

Implemented in vtkBiQuadraticQuadraticHexahedron, vtkBiQuadraticTriangle, vtkConvexPointSet, vtkCubicLine, vtkEmptyCell, vtkGenericCell, vtkHexagonalPrism, vtkHexahedron, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkLine, vtkPentagonalPrism, vtkPixel, vtkPolygon, vtkPolyhedron, vtkPolyLine, vtkPolyVertex, vtkPyramid, vtkQuad, vtkQuadraticEdge, vtkQuadraticHexahedron, vtkQuadraticPolygon, vtkQuadraticPyramid, vtkQuadraticQuad, vtkQuadraticTetra, vtkQuadraticTriangle, vtkQuadraticWedge, vtkTetra, vtkTriangle, vtkTriangleStrip, vtkTriQuadraticPyramid, vtkVertex, vtkVoxel, and vtkWedge.

◆ EvaluateLocation()

virtual void vtkCell::EvaluateLocation ( int &  subId,
const double  pcoords[3],
double  x[3],
double *  weights 
)
pure virtual

◆ Contour()

virtual void vtkCell::Contour ( double  value,
vtkDataArray cellScalars,
vtkIncrementalPointLocator locator,
vtkCellArray verts,
vtkCellArray lines,
vtkCellArray polys,
vtkPointData inPd,
vtkPointData outPd,
vtkCellData inCd,
vtkIdType  cellId,
vtkCellData outCd 
)
pure virtual

Generate contouring primitives.

The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is nullptr, then no interpolation is performed. Also, if the output cell data is non-nullptr, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Implemented in vtkBiQuadraticQuad, vtkBiQuadraticQuadraticHexahedron, vtkBiQuadraticQuadraticWedge, vtkBiQuadraticTriangle, vtkCell3D, vtkConvexPointSet, vtkCubicLine, vtkGenericCell, vtkHexahedron, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkLine, vtkPixel, vtkPolygon, vtkPolyLine, vtkPolyVertex, vtkPyramid, vtkQuad, vtkQuadraticEdge, vtkQuadraticHexahedron, vtkQuadraticLinearQuad, vtkQuadraticLinearWedge, vtkQuadraticPolygon, vtkQuadraticPyramid, vtkQuadraticQuad, vtkQuadraticTetra, vtkQuadraticTriangle, vtkQuadraticWedge, vtkTetra, vtkTriangle, vtkTriangleStrip, vtkTriQuadraticHexahedron, vtkTriQuadraticPyramid, vtkVoxel, vtkWedge, vtkEmptyCell, vtkVertex, and vtkPolyhedron.

◆ Clip()

virtual void vtkCell::Clip ( double  value,
vtkDataArray cellScalars,
vtkIncrementalPointLocator locator,
vtkCellArray connectivity,
vtkPointData inPd,
vtkPointData outPd,
vtkCellData inCd,
vtkIdType  cellId,
vtkCellData outCd,
int  insideOut 
)
pure virtual

Cut (or clip) the cell based on the input cellScalars and the specified value.

The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-nullptr, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Implemented in vtkCell3D, vtkConvexPointSet, vtkGenericCell, vtkTetra, vtkCubicLine, vtkLine, vtkPolyLine, vtkQuadraticEdge, vtkBiQuadraticQuad, vtkBiQuadraticTriangle, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkPixel, vtkQuad, vtkQuadraticLinearQuad, vtkQuadraticPolygon, vtkQuadraticQuad, vtkQuadraticTriangle, vtkTriangle, vtkTriangleStrip, vtkEmptyCell, vtkVertex, vtkBiQuadraticQuadraticHexahedron, vtkBiQuadraticQuadraticWedge, vtkQuadraticHexahedron, vtkQuadraticLinearWedge, vtkQuadraticTetra, vtkQuadraticWedge, vtkTriQuadraticHexahedron, vtkQuadraticPyramid, vtkTriQuadraticPyramid, vtkPolygon, vtkPolyVertex, and vtkPolyhedron.

◆ Inflate()

virtual int vtkCell::Inflate ( double  dist)
virtual

Inflates the cell.

Each edge is displaced following its normal by a distance of value dist. If dist is negative, then the cell shrinks. The resulting cell edges / faces are colinear / coplanar to their previous self.

The cell is assumed to be non-degenerate and to have no edge of length zero for linear 2D cells. If it is not the case, then no inflation is performed. This method needs to be overridden by inheriting non-linear / non-2D cells.

Returns
1 if inflation was successful, 0 if no inflation was performed

Reimplemented in vtkCell3D, vtkLine, vtkPixel, vtkVoxel, and vtkVertex.

◆ ComputeBoundingSphere()

virtual double vtkCell::ComputeBoundingSphere ( double  center[3]) const
virtual

Computes the bounding sphere of the cell.

If the number of points in the cell is lower or equal to 4, an exact bounding sphere is computed. If not, Ritter's algorithm is followed. If the input sphere has zero points, then each coordinate of center is set to NaN, as well as the returned distance.

This method computes the center of the sphere, and returns its squared radius.

Reimplemented in vtkPixel, and vtkVoxel.

◆ IntersectWithLine()

virtual int vtkCell::IntersectWithLine ( const double  p1[3],
const double  p2[3],
double  tol,
double &  t,
double  x[3],
double  pcoords[3],
int &  subId 
)
pure virtual

Intersect with a ray.

Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition p1[3], p2[3] and tolerance tol. The method returns non-zero value if intersection occurs. A parametric distance t between 0 and 1 along the ray representing the intersection point, the point coordinates x[3] in data coordinates and also pcoords[3] in parametric coordinates. subId is the index within the cell if a composed cell like a triangle strip.

Implemented in vtkBiQuadraticQuad, vtkBiQuadraticQuadraticHexahedron, vtkBiQuadraticQuadraticWedge, vtkBiQuadraticTriangle, vtkConvexPointSet, vtkCubicLine, vtkEmptyCell, vtkGenericCell, vtkHexagonalPrism, vtkHexahedron, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkLine, vtkPentagonalPrism, vtkPixel, vtkPolygon, vtkPolyhedron, vtkPolyLine, vtkPolyVertex, vtkPyramid, vtkQuad, vtkQuadraticEdge, vtkQuadraticHexahedron, vtkQuadraticLinearQuad, vtkQuadraticLinearWedge, vtkQuadraticPolygon, vtkQuadraticPyramid, vtkQuadraticQuad, vtkQuadraticTetra, vtkQuadraticTriangle, vtkQuadraticWedge, vtkTetra, vtkTriangle, vtkTriangleStrip, vtkTriQuadraticHexahedron, vtkTriQuadraticPyramid, vtkVertex, vtkVoxel, and vtkWedge.

◆ IntersectWithCell() [1/2]

virtual int vtkCell::IntersectWithCell ( vtkCell other,
double  tol = 0.0 
)
virtual

Intersects with an other cell.

Returns 1 if cells intersect, 0 otherwise. If an exact intersection detection with regards to floating point precision is wanted, tol should be disregarded. vtkBoundingBox are optional parameters which slightly improve the speed of the computation if bounding boxes are already available to user.

◆ IntersectWithCell() [2/2]

virtual int vtkCell::IntersectWithCell ( vtkCell other,
const vtkBoundingBox boudingBox,
const vtkBoundingBox otherBoundingBox,
double  tol = 0.0 
)
virtual

Intersects with an other cell.

Returns 1 if cells intersect, 0 otherwise. If an exact intersection detection with regards to floating point precision is wanted, tol should be disregarded. vtkBoundingBox are optional parameters which slightly improve the speed of the computation if bounding boxes are already available to user.

◆ Triangulate()

virtual int vtkCell::Triangulate ( int  index,
vtkIdList ptIds,
vtkPoints pts 
)
virtual

Generate simplices of proper dimension.

If cell is 3D, tetrahedra are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell.

Reimplemented in vtkGenericCell, vtkPolygon, and vtkQuadraticPolygon.

◆ TriangulateIds()

virtual int vtkCell::TriangulateIds ( int  index,
vtkIdList ptIds 
)
virtual

Generate simplices of proper dimension.

If cell is 3D, tetrahedra are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell.

Reimplemented in vtkGenericCell.

◆ TriangulateLocalIds()

virtual int vtkCell::TriangulateLocalIds ( int  index,
vtkIdList ptIds 
)
pure virtual

Generate simplices of proper dimension.

If cell is 3D, tetrahedra are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. ptIds are the local indices with respect to the cell

Implemented in vtkHigherOrderQuadrilateral, vtkBiQuadraticQuad, vtkBiQuadraticQuadraticHexahedron, vtkBiQuadraticQuadraticWedge, vtkBiQuadraticTriangle, vtkConvexPointSet, vtkCubicLine, vtkEmptyCell, vtkGenericCell, vtkHexagonalPrism, vtkHexahedron, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkLine, vtkPentagonalPrism, vtkPixel, vtkPolygon, vtkPolyhedron, vtkPolyLine, vtkPolyVertex, vtkPyramid, vtkQuad, vtkQuadraticEdge, vtkQuadraticHexahedron, vtkQuadraticLinearQuad, vtkQuadraticLinearWedge, vtkQuadraticPolygon, vtkQuadraticPyramid, vtkQuadraticQuad, vtkQuadraticTetra, vtkQuadraticTriangle, vtkQuadraticWedge, vtkTetra, vtkTriangle, vtkTriangleStrip, vtkTriQuadraticHexahedron, vtkTriQuadraticPyramid, vtkVertex, vtkVoxel, and vtkWedge.

◆ Derivatives()

virtual void vtkCell::Derivatives ( int  subId,
const double  pcoords[3],
const double *  values,
int  dim,
double *  derivs 
)
pure virtual

Compute derivatives given cell subId and parametric coordinates.

The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).

Implemented in vtkBiQuadraticQuad, vtkBiQuadraticQuadraticHexahedron, vtkBiQuadraticQuadraticWedge, vtkBiQuadraticTriangle, vtkConvexPointSet, vtkCubicLine, vtkEmptyCell, vtkGenericCell, vtkHexagonalPrism, vtkHexahedron, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkLine, vtkPentagonalPrism, vtkPixel, vtkPolygon, vtkPolyhedron, vtkPolyLine, vtkPolyVertex, vtkPyramid, vtkQuad, vtkQuadraticEdge, vtkQuadraticHexahedron, vtkQuadraticLinearQuad, vtkQuadraticLinearWedge, vtkQuadraticPolygon, vtkQuadraticPyramid, vtkQuadraticQuad, vtkQuadraticTetra, vtkQuadraticTriangle, vtkQuadraticWedge, vtkTetra, vtkTriangle, vtkTriangleStrip, vtkTriQuadraticHexahedron, vtkTriQuadraticPyramid, vtkVertex, vtkVoxel, and vtkWedge.

◆ GetBounds() [1/2]

void vtkCell::GetBounds ( double  bounds[6])

Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax).

Copy result into user provided array.

◆ GetBounds() [2/2]

double * vtkCell::GetBounds ( )

Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax).

Return pointer to array of six double values.

◆ GetLength2()

double vtkCell::GetLength2 ( )

Compute Length squared of cell (i.e., bounding box diagonal squared).

◆ GetParametricCenter()

virtual int vtkCell::GetParametricCenter ( double  pcoords[3])
virtual

◆ GetParametricDistance()

virtual double vtkCell::GetParametricDistance ( const double  pcoords[3])
virtual

Return the distance of the parametric coordinate provided to the cell.

If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.)

Reimplemented in vtkBiQuadraticTriangle, vtkCubicLine, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkQuadraticTetra, vtkQuadraticTriangle, vtkTetra, vtkTriangle, and vtkTriQuadraticPyramid.

◆ IsPrimaryCell()

virtual int vtkCell::IsPrimaryCell ( )
inlinevirtual

Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet).

This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells).

Reimplemented in vtkConvexPointSet, vtkGenericCell, vtkPolygon, vtkPolyhedron, vtkPolyLine, vtkPolyVertex, vtkQuadraticPolygon, and vtkTriangleStrip.

Definition at line 470 of file vtkCell.h.

◆ GetParametricCoords()

virtual double * vtkCell::GetParametricCoords ( )
virtual

Return a contiguous array of parametric coordinates of the points defining this cell.

In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell.

Reimplemented in vtkBiQuadraticQuad, vtkBiQuadraticQuadraticHexahedron, vtkBiQuadraticQuadraticWedge, vtkBiQuadraticTriangle, vtkConvexPointSet, vtkCubicLine, vtkGenericCell, vtkHexagonalPrism, vtkHexahedron, vtkHigherOrderCurve, vtkHigherOrderHexahedron, vtkHigherOrderQuadrilateral, vtkHigherOrderTetra, vtkHigherOrderTriangle, vtkHigherOrderWedge, vtkLine, vtkPentagonalPrism, vtkPixel, vtkPolyhedron, vtkPyramid, vtkQuad, vtkQuadraticEdge, vtkQuadraticHexahedron, vtkQuadraticLinearQuad, vtkQuadraticLinearWedge, vtkQuadraticPyramid, vtkQuadraticQuad, vtkQuadraticTetra, vtkQuadraticTriangle, vtkQuadraticWedge, vtkTetra, vtkTriangle, vtkTriQuadraticHexahedron, vtkTriQuadraticPyramid, vtkVertex, vtkVoxel, and vtkWedge.

◆ InterpolateFunctions()

virtual void vtkCell::InterpolateFunctions ( const double   vtkNotUsed(pcoords)[3],
double *  vtkNotUsedweight 
)
inlinevirtual

Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level.

Typically overridden in subclasses.

Definition at line 488 of file vtkCell.h.

◆ InterpolateDerivs()

virtual void vtkCell::InterpolateDerivs ( const double   vtkNotUsed(pcoords)[3],
double *  vtkNotUsedderivs 
)
inlinevirtual

Definition at line 491 of file vtkCell.h.

Member Data Documentation

◆ Points

vtkPoints* vtkCell::Points

Definition at line 494 of file vtkCell.h.

◆ PointIds

vtkIdList* vtkCell::PointIds

Definition at line 495 of file vtkCell.h.

◆ Bounds

double vtkCell::Bounds[6]
protected

Definition at line 501 of file vtkCell.h.


The documentation for this class was generated from the following file: