VTK  9.6.20260215
vtkGeneralizedSurfaceNets3D Class Reference

create a surface net from an unorganized set of segmented (i.e., labeled) points More...

#include <vtkGeneralizedSurfaceNets3D.h>

Inheritance diagram for vtkGeneralizedSurfaceNets3D:
[legend]
Collaboration diagram for vtkGeneralizedSurfaceNets3D:
[legend]

Public Types

enum  MeshType { MESH_TYPE_DEFAULT = 0 , MESH_TYPE_TRIANGLES , MESH_TYPE_POLYGONS }
 This enum is used to control the type of the output polygonal mesh. More...
 
- Public Types inherited from vtkPolyDataAlgorithm
typedef vtkAlgorithm Superclass
 
- Public Types inherited from vtkAlgorithm
enum  DesiredOutputPrecision { SINGLE_PRECISION , DOUBLE_PRECISION , DEFAULT_PRECISION }
 Values used for setting the desired output precision for various algorithms. More...
 
typedef vtkObject Superclass
 

Public Member Functions

int GetNumberOfThreads ()
 Return the number of threads actually used during execution.
 
int GetNumberOfPrunes ()
 Return the number of hull prunes performed during execution.
 
vtkMTimeType GetMTime () override
 The modified time is also a function of the built in locator, smoothing filter, and label values.
 
void SetValue (int i, double value)
 Set a particular label value at label number i.
 
void SetLabel (int i, double value)
 Set a particular label value at label number i.
 
double GetValue (int i)
 Get the ith label value.
 
double GetLabel (int i)
 Get the ith label value.
 
double * GetValues ()
 Get a pointer to an array of labels.
 
double * GetLabels ()
 Get a pointer to an array of labels.
 
void GetValues (double *contourValues)
 Fill a supplied list with label values.
 
void GetLabels (double *contourValues)
 Fill a supplied list with label values.
 
void SetNumberOfLabels (int number)
 Set the number of labels to place into the list.
 
void SetNumberOfContours (int number)
 Set the number of labels to place into the list.
 
vtkIdType GetNumberOfLabels ()
 Get the number of labels in the list of label values.
 
vtkIdType GetNumberOfContours ()
 Get the number of labels in the list of label values.
 
void GenerateLabels (int numLabels, double range[2])
 Generate numLabels equally spaced labels between the specified range.
 
void GenerateValues (int numContours, double range[2])
 Generate numLabels equally spaced labels between the specified range.
 
void GenerateLabels (int numLabels, double rangeStart, double rangeEnd)
 Generate numLabels equally spaced labels between the specified range.
 
void GenerateValues (int numContours, double rangeStart, double rangeEnd)
 Generate numLabels equally spaced labels between the specified range.
 
virtual void SetBackgroundLabel (int)
 This value specifies the label value to use when indicating that a region is outside.
 
virtual int GetBackgroundLabel ()
 This value specifies the label value to use when indicating that a region is outside.
 
virtual vtkTypeBool GetBoundaryCapping ()
 Specify whether to cap the surface net along the boundary.
 
virtual void SetBoundaryCapping (vtkTypeBool)
 Specify whether to cap the surface net along the boundary.
 
virtual void BoundaryCappingOn ()
 Specify whether to cap the surface net along the boundary.
 
virtual void BoundaryCappingOff ()
 Specify whether to cap the surface net along the boundary.
 
virtual vtkTypeBool GetMergePoints ()
 Specify whether to merge nearly concident points in order to produce watertight output surfaces.
 
virtual void SetMergePoints (vtkTypeBool)
 Specify whether to merge nearly concident points in order to produce watertight output surfaces.
 
virtual void MergePointsOn ()
 Specify whether to merge nearly concident points in order to produce watertight output surfaces.
 
virtual void MergePointsOff ()
 Specify whether to merge nearly concident points in order to produce watertight output surfaces.
 
virtual void SetSmoothing (vtkTypeBool)
 Indicate whether smoothing should be enabled.
 
virtual vtkTypeBool GetSmoothing ()
 Indicate whether smoothing should be enabled.
 
virtual void SmoothingOn ()
 Indicate whether smoothing should be enabled.
 
virtual void SmoothingOff ()
 Indicate whether smoothing should be enabled.
 
void SetNumberOfIterations (int n)
 Convenience methods that delegate to the internal smoothing filter follow below.
 
int GetNumberOfIterations ()
 Convenience methods that delegate to the internal smoothing filter follow below.
 
void SetRelaxationFactor (double f)
 Convenience methods that delegate to the internal smoothing filter follow below.
 
double GetRelaxationFactor ()
 Convenience methods that delegate to the internal smoothing filter follow below.
 
void SetConstraintDistance (double d)
 Convenience methods that delegate to the internal smoothing filter follow below.
 
double GetConstraintDistance ()
 Convenience methods that delegate to the internal smoothing filter follow below.
 
virtual void SetGenerateSmoothingStencils (vtkTypeBool)
 Indicate whether this filter should produce smoothing stencils.
 
virtual vtkTypeBool GetGenerateSmoothingStencils ()
 Indicate whether this filter should produce smoothing stencils.
 
virtual void GenerateSmoothingStencilsOn ()
 Indicate whether this filter should produce smoothing stencils.
 
virtual void GenerateSmoothingStencilsOff ()
 Indicate whether this filter should produce smoothing stencils.
 
virtual void SetSmoothingConstraints (unsigned char, unsigned char, unsigned char, unsigned char)
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
virtual void SetSmoothingConstraints (unsigned char[4])
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
virtual unsigned char * GetSmoothingConstraints ()
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
virtual void GetSmoothingConstraints (unsigned char &, unsigned char &, unsigned char &, unsigned char &)
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
virtual void GetSmoothingConstraints (unsigned char[4])
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
void AllSmoothingConstraintsOn ()
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
void AllSmoothingConstraintsOff ()
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
void EdgeSmoothingConstraintOff ()
 If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.
 
virtual vtkConstrainedSmoothingFilterGetSmoother ()
 Get the internal instance of vtkConstrainedSmoothingFilter used to smooth the extracted surface net.
 
virtual void SetOutputMeshType (int)
 Control the type of output mesh.
 
virtual int GetOutputMeshType ()
 Control the type of output mesh.
 
void SetOutputMeshTypeToDefault ()
 Control the type of output mesh.
 
void SetOutputMeshTypeToTriangles ()
 Control the type of output mesh.
 
void SetOutputMeshTypeToPolygons ()
 Control the type of output mesh.
 
virtual void SetPadding (double)
 Specify a padding for the bounding box of the input points.
 
virtual double GetPadding ()
 Specify a padding for the bounding box of the input points.
 
vtkStaticPointLocatorGetLocator ()
 Retrieve the internal locator to manually configure it, for example specifying the number of points per bucket.
 
virtual void SetValidate (vtkTypeBool)
 Enable the validation of the Voronoi tesselation.
 
virtual vtkTypeBool GetValidate ()
 Enable the validation of the Voronoi tesselation.
 
virtual void ValidateOn ()
 Enable the validation of the Voronoi tesselation.
 
virtual void ValidateOff ()
 Enable the validation of the Voronoi tesselation.
 
virtual void SetPointOfInterest (vtkIdType)
 These methods are for debugging or instructional purposes.
 
virtual vtkIdType GetPointOfInterest ()
 These methods are for debugging or instructional purposes.
 
virtual void SetPointsOfInterest (vtkIdTypeArray *)
 These methods are for debugging or instructional purposes.
 
virtual vtkIdTypeArrayGetPointsOfInterest ()
 These methods are for debugging or instructional purposes.
 
virtual void SetMaximumNumberOfHullClips (vtkIdType)
 These methods are for debugging or instructional purposes.
 
virtual vtkIdType GetMaximumNumberOfHullClips ()
 These methods are for debugging or instructional purposes.
 
virtual void SetPruneTolerance (double)
 Specify a relative tolerance to determine which spokes (i.e., small hull facets) to prune.
 
virtual double GetPruneTolerance ()
 Specify a relative tolerance to determine which spokes (i.e., small hull facets) to prune.
 
virtual void SetBatchSize (unsigned int)
 Specify the number of input generating points in a batch, where a batch defines a contiguous subset of the input points operated on during threaded execution.
 
virtual unsigned int GetBatchSize ()
 Specify the number of input generating points in a batch, where a batch defines a contiguous subset of the input points operated on during threaded execution.
 
- Public Member Functions inherited from vtkPolyDataAlgorithm
vtkPolyDataAlgorithmNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses.
 
vtkTypeBool ProcessRequest (vtkInformation *, vtkInformationVector **, vtkInformationVector *) override
 see vtkAlgorithm for details
 
vtkDataObjectGetInput ()
 
vtkDataObjectGetInput (int port)
 
vtkPolyDataGetPolyDataInput (int port)
 
vtkPolyDataGetOutput ()
 Get the output data object for a port on this algorithm.
 
vtkPolyDataGetOutput (int)
 Get the output data object for a port on this algorithm.
 
virtual void SetOutput (vtkDataObject *d)
 Get the output data object for a port on this algorithm.
 
void SetInputData (vtkDataObject *)
 Assign a data object as input.
 
void SetInputData (int, vtkDataObject *)
 Assign a data object as input.
 
void AddInputData (vtkDataObject *)
 Assign a data object as input.
 
void AddInputData (int, vtkDataObject *)
 Assign a data object as input.
 
- Public Member Functions inherited from vtkAlgorithm
vtkAlgorithmNewInstance () const
 
vtkTypeBool HasExecutive ()
 Check whether this algorithm has an assigned executive.
 
vtkExecutiveGetExecutive ()
 Get this algorithm's executive.
 
virtual void SetExecutive (vtkExecutive *executive)
 Set this algorithm's executive.
 
vtkTypeBool ProcessRequest (vtkInformation *request, vtkCollection *inInfo, vtkInformationVector *outInfo)
 Version of ProcessRequest() that is wrapped.
 
virtual int ComputePipelineMTime (vtkInformation *request, vtkInformationVector **inInfoVec, vtkInformationVector *outInfoVec, int requestFromOutputPort, vtkMTimeType *mtime)
 A special version of ProcessRequest meant specifically for the pipeline modified time request.
 
virtual int ModifyRequest (vtkInformation *request, int when)
 This method gives the algorithm a chance to modify the contents of a request before or after (specified in the when argument) it is forwarded.
 
vtkInformationGetInputPortInformation (int port)
 Get the information object associated with an input port.
 
vtkInformationGetOutputPortInformation (int port)
 Get the information object associated with an output port.
 
int GetNumberOfInputPorts ()
 Get the number of input ports used by the algorithm.
 
int GetNumberOfOutputPorts ()
 Get the number of output ports provided by the algorithm.
 
void SetAbortExecuteAndUpdateTime ()
 Set AbortExecute Flag and update LastAbortTime.
 
void UpdateProgress (double amount)
 Update the progress of the process object.
 
bool CheckAbort ()
 Checks to see if this filter should abort.
 
virtual void SetInputArrayToProcess (int idx, vtkInformation *info)
 Set the input data arrays that this algorithm will process.
 
int GetNumberOfInputArraySpecifications ()
 Get the number of input array indices that have already been set.
 
bool ResetInputArraySpecifications ()
 Clear all existing input array specifications (as if SetInputArrayToProcess had never been called).
 
vtkInformationGetInputArrayInformation (int idx)
 Get the info object for the specified input array to this algorithm.
 
void RemoveAllInputs ()
 Remove all the input data.
 
vtkDataObjectGetOutputDataObject (int port)
 Get the data object that will contain the algorithm output for the given port.
 
vtkDataObjectGetInputDataObject (int port, int connection)
 Get the data object that will contain the algorithm input for the given port and given connection.
 
virtual void RemoveInputConnection (int port, vtkAlgorithmOutput *input)
 Remove a connection from the given input port index.
 
virtual void RemoveInputConnection (int port, int idx)
 Remove a connection given by index idx.
 
virtual void RemoveAllInputConnections (int port)
 Removes all input connections.
 
virtual void SetInputDataObject (int port, vtkDataObject *data)
 Sets the data-object as an input on the given port index.
 
virtual void SetInputDataObject (vtkDataObject *data)
 
virtual void AddInputDataObject (int port, vtkDataObject *data)
 Add the data-object as an input to this given port.
 
virtual void AddInputDataObject (vtkDataObject *data)
 
vtkAlgorithmOutputGetOutputPort (int index)
 Get a proxy object corresponding to the given output port of this algorithm.
 
vtkAlgorithmOutputGetOutputPort ()
 
int GetNumberOfInputConnections (int port)
 Get the number of inputs currently connected to a port.
 
int GetTotalNumberOfInputConnections ()
 Get the total number of inputs for this algorithm.
 
vtkAlgorithmOutputGetInputConnection (int port, int index)
 Get the algorithm output port connected to an input port.
 
vtkAlgorithmGetInputAlgorithm (int port, int index, int &algPort)
 Returns the algorithm and the output port index of that algorithm connected to a port-index pair.
 
vtkAlgorithmGetInputAlgorithm (int port, int index)
 Returns the algorithm connected to a port-index pair.
 
vtkAlgorithmGetInputAlgorithm ()
 Equivalent to GetInputAlgorithm(0, 0).
 
vtkExecutiveGetInputExecutive (int port, int index)
 Returns the executive associated with a particular input connection.
 
vtkExecutiveGetInputExecutive ()
 Equivalent to GetInputExecutive(0, 0)
 
vtkInformationGetInputInformation (int port, int index)
 Return the information object that is associated with a particular input connection.
 
vtkInformationGetInputInformation ()
 Equivalent to GetInputInformation(0, 0)
 
vtkInformationGetOutputInformation (int port)
 Return the information object that is associated with a particular output port.
 
virtual vtkTypeBool Update (int port, vtkInformationVector *requests)
 This method enables the passing of data requests to the algorithm to be used during execution (in addition to bringing a particular port up-to-date).
 
virtual vtkTypeBool Update (vtkInformation *requests)
 Convenience method to update an algorithm after passing requests to its first output port.
 
virtual int UpdatePiece (int piece, int numPieces, int ghostLevels, const int extents[6]=nullptr)
 Convenience method to update an algorithm after passing requests to its first output port.
 
virtual int UpdateExtent (const int extents[6])
 Convenience method to update an algorithm after passing requests to its first output port.
 
virtual int UpdateTimeStep (double time, int piece=-1, int numPieces=1, int ghostLevels=0, const int extents[6]=nullptr)
 Convenience method to update an algorithm after passing requests to its first output port.
 
virtual void UpdateInformation ()
 Bring the algorithm's information up-to-date.
 
virtual void UpdateDataObject ()
 Create output object(s).
 
virtual void PropagateUpdateExtent ()
 Propagate meta-data upstream.
 
virtual void UpdateWholeExtent ()
 Bring this algorithm's outputs up-to-date.
 
void ConvertTotalInputToPortConnection (int ind, int &port, int &conn)
 Convenience routine to convert from a linear ordering of input connections to a port/connection pair.
 
void RemoveNoPriorTemporalAccessInformationKey ()
 Removes any information key vtkStreamingDemandDrivenPipeline::NO_PRIOR_TEMPORAL_ACCESS() to all output ports of this vtkAlgorithm.
 
virtual vtkInformationGetInformation ()
 Set/Get the information object associated with this algorithm.
 
virtual void SetInformation (vtkInformation *)
 Set/Get the information object associated with this algorithm.
 
bool UsesGarbageCollector () const override
 Participate in garbage collection.
 
virtual void SetAbortExecute (vtkTypeBool)
 Set/Get the AbortExecute flag for the process object.
 
virtual vtkTypeBool GetAbortExecute ()
 Set/Get the AbortExecute flag for the process object.
 
virtual void AbortExecuteOn ()
 Set/Get the AbortExecute flag for the process object.
 
virtual void AbortExecuteOff ()
 Set/Get the AbortExecute flag for the process object.
 
virtual double GetProgress ()
 Get the execution progress of a process object.
 
void SetContainerAlgorithm (vtkAlgorithm *containerAlg)
 Set/get a Container algorithm for this algorithm.
 
vtkAlgorithmGetContainerAlgorithm ()
 Set/get a Container algorithm for this algorithm.
 
virtual void SetAbortOutput (bool)
 Set/Get an internal variable used to communicate between the algorithm and executive.
 
virtual bool GetAbortOutput ()
 Set/Get an internal variable used to communicate between the algorithm and executive.
 
void SetProgressShiftScale (double shift, double scale)
 Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called.
 
virtual double GetProgressShift ()
 Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called.
 
virtual double GetProgressScale ()
 Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called.
 
void SetProgressText (const char *ptext)
 Set the current text message associated with the progress state.
 
virtual char * GetProgressText ()
 Set the current text message associated with the progress state.
 
virtual unsigned long GetErrorCode ()
 The error code contains a possible error that occurred while reading or writing the file.
 
void SetInputArrayToProcess (const char *name, int fieldAssociation, int component=vtkArrayComponents::AllComponents)
 Set the input data arrays that this algorithm will process.
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, const char *name)
 Set the input data arrays that this algorithm will process.
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, const char *name, int component)
 This method variant also accepts a component to consider rather than the entire tuple.
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType)
 Set the input data arrays that this algorithm will process.
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType, int component)
 This method variant also accepts a component to consider rather than the entire tuple.
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, const char *fieldAssociation, const char *attributeTypeorName)
 Set the input data arrays that this algorithm will process.
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, const char *fieldAssociation, const char *attributeTypeorName, const char *component)
 Set the input data arrays that this algorithm will process.
 
virtual void SetInputConnection (int port, vtkAlgorithmOutput *input)
 Set the connection for the given input port index.
 
virtual void SetInputConnection (vtkAlgorithmOutput *input)
 Set the connection for the given input port index.
 
virtual void AddInputConnection (int port, vtkAlgorithmOutput *input)
 Add a connection to the given input port index.
 
virtual void AddInputConnection (vtkAlgorithmOutput *input)
 Add a connection to the given input port index.
 
virtual bool Update (int port)
 Bring this algorithm's outputs up-to-date.
 
virtual bool Update ()
 Bring this algorithm's outputs up-to-date.
 
virtual void SetReleaseDataFlag (vtkTypeBool)
 Turn release data flag on or off for all output ports.
 
virtual vtkTypeBool GetReleaseDataFlag ()
 Turn release data flag on or off for all output ports.
 
void ReleaseDataFlagOn ()
 Turn release data flag on or off for all output ports.
 
void ReleaseDataFlagOff ()
 Turn release data flag on or off for all output ports.
 
int UpdateExtentIsEmpty (vtkInformation *pinfo, vtkDataObject *output)
 This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0.
 
int UpdateExtentIsEmpty (vtkInformation *pinfo, int extentType)
 This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0.
 
int * GetUpdateExtent ()
 These functions return the update extent for output ports that use 3D extents.
 
int * GetUpdateExtent (int port)
 These functions return the update extent for output ports that use 3D extents.
 
void GetUpdateExtent (int &x0, int &x1, int &y0, int &y1, int &z0, int &z1)
 These functions return the update extent for output ports that use 3D extents.
 
void GetUpdateExtent (int port, int &x0, int &x1, int &y0, int &y1, int &z0, int &z1)
 These functions return the update extent for output ports that use 3D extents.
 
void GetUpdateExtent (int extent[6])
 These functions return the update extent for output ports that use 3D extents.
 
void GetUpdateExtent (int port, int extent[6])
 These functions return the update extent for output ports that use 3D extents.
 
int GetUpdatePiece ()
 These functions return the update extent for output ports that use piece extents.
 
int GetUpdatePiece (int port)
 These functions return the update extent for output ports that use piece extents.
 
int GetUpdateNumberOfPieces ()
 These functions return the update extent for output ports that use piece extents.
 
int GetUpdateNumberOfPieces (int port)
 These functions return the update extent for output ports that use piece extents.
 
int GetUpdateGhostLevel ()
 These functions return the update extent for output ports that use piece extents.
 
int GetUpdateGhostLevel (int port)
 These functions return the update extent for output ports that use piece extents.
 
void SetProgressObserver (vtkProgressObserver *)
 If an ProgressObserver is set, the algorithm will report progress through it rather than directly.
 
virtual vtkProgressObserverGetProgressObserver ()
 If an ProgressObserver is set, the algorithm will report progress through it rather than directly.
 
void SetNoPriorTemporalAccessInformationKey (int key)
 Set to all output ports of this algorithm the information key vtkStreamingDemandDrivenPipeline::NO_PRIOR_TEMPORAL_ACCESS().
 
void SetNoPriorTemporalAccessInformationKey ()
 Set to all output ports of this algorithm the information key vtkStreamingDemandDrivenPipeline::NO_PRIOR_TEMPORAL_ACCESS().
 
- Public Member Functions inherited from vtkObject
 vtkBaseTypeMacro (vtkObject, vtkObjectBase)
 
virtual void DebugOn ()
 Turn debugging output on.
 
virtual void DebugOff ()
 Turn debugging output off.
 
bool GetDebug ()
 Get the value of the debug flag.
 
void SetDebug (bool debugFlag)
 Set the value of the debug flag.
 
virtual void Modified ()
 Update the modification time for this object.
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
vtkTypeBool HasObserver (unsigned long event)
 
vtkTypeBool HasObserver (const char *event)
 
vtkTypeBool InvokeEvent (unsigned long event)
 
vtkTypeBool InvokeEvent (const char *event)
 
std::string GetObjectDescription () const override
 The object description printed in messages and PrintSelf output.
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkCommandGetCommand (unsigned long tag)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObserver (vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
template<class U, class T>
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U, class T>
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U, class T>
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Allow user to set the AbortFlagOn() with the return value of the callback method.
 
vtkTypeBool InvokeEvent (unsigned long event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
vtkTypeBool InvokeEvent (const char *event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
virtual void SetObjectName (const std::string &objectName)
 Set/get the name of this object for reporting purposes.
 
virtual std::string GetObjectName () const
 Set/get the name of this object for reporting purposes.
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 Return the class name as a string.
 
virtual vtkIdType GetNumberOfGenerationsFromBase (const char *name)
 Given the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
virtual void Delete ()
 Delete a VTK object.
 
virtual void FastDelete ()
 Delete a reference to this object.
 
void InitializeObjectBase ()
 
void Print (ostream &os)
 Print an object to an ostream.
 
void Register (vtkObjectBase *o)
 Increase the reference count (mark as used by another object).
 
virtual void UnRegister (vtkObjectBase *o)
 Decrease the reference count (release by another object).
 
int GetReferenceCount ()
 Return the current reference count of this object.
 
void SetReferenceCount (int)
 Sets the reference count.
 
bool GetIsInMemkind () const
 A local state flag that remembers whether this object lives in the normal or extended memory space.
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 

Protected Member Functions

 vtkGeneralizedSurfaceNets3D ()
 
 ~vtkGeneralizedSurfaceNets3D () override=default
 
int RequestData (vtkInformation *, vtkInformationVector **, vtkInformationVector *) override
 This is called by the superclass.
 
int FillInputPortInformation (int port, vtkInformation *info) override
 Fill the input port information objects for this algorithm.
 
- Protected Member Functions inherited from vtkPolyDataAlgorithm
 vtkPolyDataAlgorithm ()
 
 ~vtkPolyDataAlgorithm () override
 
virtual int RequestInformation (vtkInformation *request, vtkInformationVector **inputVector, vtkInformationVector *outputVector)
 
virtual int RequestUpdateExtent (vtkInformation *, vtkInformationVector **, vtkInformationVector *)
 This is called by the superclass.
 
virtual int RequestUpdateTime (vtkInformation *, vtkInformationVector **, vtkInformationVector *)
 This is called by the superclass.
 
int FillOutputPortInformation (int port, vtkInformation *info) override
 Fill the output port information objects for this algorithm.
 
int FillInputPortInformation (int port, vtkInformation *info) override
 Fill the input port information objects for this algorithm.
 
- Protected Member Functions inherited from vtkAlgorithm
 vtkAlgorithm ()
 
 ~vtkAlgorithm () override
 
bool CheckUpstreamAbort ()
 Checks to see if an upstream filter has been aborted.
 
virtual void SetNumberOfInputPorts (int n)
 Set the number of input ports used by the algorithm.
 
virtual void SetNumberOfOutputPorts (int n)
 Set the number of output ports provided by the algorithm.
 
int InputPortIndexInRange (int index, const char *action)
 
int OutputPortIndexInRange (int index, const char *action)
 
int GetInputArrayAssociation (int idx, vtkInformationVector **inputVector)
 Get the association of the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass.
 
int GetInputArrayComponent (int idx)
 Get the component to process of the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass.
 
vtkInformationGetInputArrayFieldInformation (int idx, vtkInformationVector **inputVector)
 This method takes in an index (as specified in SetInputArrayToProcess) and a pipeline information vector.
 
virtual vtkExecutiveCreateDefaultExecutive ()
 Create a default executive.
 
void ReportReferences (vtkGarbageCollector *) override
 
virtual void SetNthInputConnection (int port, int index, vtkAlgorithmOutput *input)
 Replace the Nth connection on the given input port.
 
virtual void SetNumberOfInputConnections (int port, int n)
 Set the number of input connections on the given input port.
 
void SetInputDataInternal (int port, vtkDataObject *input)
 These methods are used by subclasses to implement methods to set data objects directly as input.
 
void AddInputDataInternal (int port, vtkDataObject *input)
 
int GetInputArrayAssociation (int idx, int connection, vtkInformationVector **inputVector)
 Filters that have multiple connections on one port can use this signature.
 
int GetInputArrayAssociation (int idx, vtkDataObject *input)
 Filters that have multiple connections on one port can use this signature.
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkInformationVector **inputVector)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass.
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkInformationVector **inputVector, int &association)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass.
 
vtkDataArrayGetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector)
 Filters that have multiple connections on one port can use this signature.
 
vtkDataArrayGetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association)
 Filters that have multiple connections on one port can use this signature.
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkDataObject *input)
 Filters that have multiple connections on one port can use this signature.
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkDataObject *input, int &association)
 Filters that have multiple connections on one port can use this signature.
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass.
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector, int &association)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass.
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector)
 Filters that have multiple connections on one port can use this signature.
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association)
 Filters that have multiple connections on one port can use this signature.
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkDataObject *input)
 Filters that have multiple connections on one port can use this signature.
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkDataObject *input, int &association)
 Filters that have multiple connections on one port can use this signature.
 
vtkSmartPointer< vtkAbstractArrayGetInputArray (int idx, int connection, vtkInformationVector **inputVector, int &association, int requestedComponent=vtkArrayComponents::Requested)
 Get an array from the input at index idx.
 
vtkSmartPointer< vtkAbstractArrayGetInputArray (int idx, vtkDataObject *input, int &association, int requestedComponent=vtkArrayComponents::Requested)
 Get an array from the input at index idx.
 
template<typename ArrayType, typename... Params>
vtkSmartPointer< ArrayType > GetInputArrayAs (Params &&... params)
 Get an array from the input at index idx.
 
virtual void SetErrorCode (unsigned long)
 The error code contains a possible error that occurred while reading or writing the file.
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
 ~vtkObject () override
 
void RegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=nullptr)
 These methods allow a command to exclusively grab all events.
 
void InternalReleaseFocus ()
 These methods allow a command to exclusively grab all events.
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

vtkSmartPointer< vtkContourValuesLabels
 
int BackgroundLabel
 
vtkTypeBool BoundaryCapping
 
vtkTypeBool MergePoints
 
vtkTypeBool Smoothing
 
vtkSmartPointer< vtkConstrainedSmoothingFilterSmoother
 
vtkSmartPointer< vtkStaticPointLocatorLocator
 
int OutputMeshType
 
double Padding
 
vtkTypeBool Validate
 
vtkTypeBool GenerateSmoothingStencils
 
unsigned char SmoothingConstraints [4]
 
vtkIdType PointOfInterest
 
vtkSmartPointer< vtkIdTypeArrayPointsOfInterest
 
vtkIdType MaximumNumberOfHullClips
 
double PruneTolerance
 
unsigned int BatchSize
 
int NumberOfThreads
 
int NumberOfPrunes
 
- Protected Attributes inherited from vtkAlgorithm
vtkTimeStamp LastAbortCheckTime
 
vtkInformationInformation
 
double Progress
 
char * ProgressText
 
vtkProgressObserverProgressObserver
 
unsigned long ErrorCode
 The error code contains a possible error that occurred while reading or writing the file.
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
std::string ObjectName
 
- Protected Attributes inherited from vtkObjectBase
std::atomic< int32_t > ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 
typedef vtkPolyDataAlgorithm Superclass
 Standard methods for instantiation, type information, and printing.
 
static vtkGeneralizedSurfaceNets3DNew ()
 Standard methods for instantiation, type information, and printing.
 
static vtkTypeBool IsTypeOf (const char *type)
 Standard methods for instantiation, type information, and printing.
 
static vtkGeneralizedSurfaceNets3DSafeDownCast (vtkObjectBase *o)
 Standard methods for instantiation, type information, and printing.
 
virtual vtkTypeBool IsA (const char *type)
 Standard methods for instantiation, type information, and printing.
 
vtkGeneralizedSurfaceNets3DNewInstance () const
 Standard methods for instantiation, type information, and printing.
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Standard methods for instantiation, type information, and printing.
 
virtual vtkObjectBaseNewInstanceInternal () const
 Standard methods for instantiation, type information, and printing.
 

Additional Inherited Members

- Static Public Member Functions inherited from vtkPolyDataAlgorithm
static vtkPolyDataAlgorithmNew ()
 
static vtkTypeBool IsTypeOf (const char *type)
 
static vtkPolyDataAlgorithmSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkAlgorithm
static vtkAlgorithmNew ()
 
static vtkTypeBool IsTypeOf (const char *type)
 
static vtkAlgorithmSafeDownCast (vtkObjectBase *o)
 
static vtkInformationIntegerKeyINPUT_IS_OPTIONAL ()
 Keys used to specify input port requirements.
 
static vtkInformationIntegerKeyINPUT_IS_REPEATABLE ()
 
static vtkInformationInformationVectorKeyINPUT_REQUIRED_FIELDS ()
 
static vtkInformationStringVectorKeyINPUT_REQUIRED_DATA_TYPE ()
 
static vtkInformationInformationVectorKeyINPUT_ARRAYS_TO_PROCESS ()
 
static vtkInformationIntegerKeyINPUT_PORT ()
 
static vtkInformationIntegerKeyINPUT_CONNECTION ()
 
static vtkInformationIntegerKeyCAN_PRODUCE_SUB_EXTENT ()
 This key tells the executive that a particular output port is capable of producing an arbitrary subextent of the whole extent.
 
static vtkInformationIntegerKeyCAN_HANDLE_PIECE_REQUEST ()
 Key that tells the pipeline that a particular algorithm can or cannot handle piece request.
 
static vtkInformationIntegerKeyABORTED ()
 
static void SetDefaultExecutivePrototype (vtkExecutive *proto)
 If the DefaultExecutivePrototype is set, a copy of it is created in CreateDefaultExecutive() using NewInstance().
 
- Static Public Member Functions inherited from vtkObject
static vtkObjectNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void BreakOnError ()
 This method is called when vtkErrorMacro executes.
 
static void SetGlobalWarningDisplay (vtkTypeBool val)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOn ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOff ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static vtkTypeBool GetGlobalWarningDisplay ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
- Static Public Member Functions inherited from vtkObjectBase
static vtkTypeBool IsTypeOf (const char *name)
 Return 1 if this class type is the same type of (or a subclass of) the named class.
 
static vtkIdType GetNumberOfGenerationsFromBaseType (const char *name)
 Given a the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
static vtkObjectBaseNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void SetMemkindDirectory (const char *directoryname)
 The name of a directory, ideally mounted -o dax, to memory map an extended memory space within.
 
static bool GetUsingMemkind ()
 A global state flag that controls whether vtkObjects are constructed in the usual way (the default) or within the extended memory space.
 
- Public Attributes inherited from vtkAlgorithm
std::atomic< vtkTypeBoolAbortExecute
 
- Static Protected Member Functions inherited from vtkAlgorithm
static vtkInformationIntegerKeyPORT_REQUIREMENTS_FILLED ()
 
- Static Protected Member Functions inherited from vtkObjectBase
static vtkMallocingFunction GetCurrentMallocFunction ()
 
static vtkReallocingFunction GetCurrentReallocFunction ()
 
static vtkFreeingFunction GetCurrentFreeFunction ()
 
static vtkFreeingFunction GetAlternateFreeFunction ()
 
- Static Protected Attributes inherited from vtkAlgorithm
static vtkTimeStamp LastAbortTime
 
static vtkExecutiveDefaultExecutivePrototype
 

Detailed Description

create a surface net from an unorganized set of segmented (i.e., labeled) points

vtkGeneralizedSurfaceNets3D is a filter that constructs a surface net from a labeled / segmented list of input points. The points are presumed to lie within 3D-space. These points may be represented by any dataset of type vtkPointSet and subclasses. The output of the filter is a complex of convex polygons represented by a vtkPolyData. Additionally the output contains cell data consisting of a 2-component tuples which record the regions on either side of the polygonal faces composing the surface net. The algorithm uses a novel 3D Voronoi tessellation algorithm, and extracts surface net faces between Voronoi hulls which lie in specified separate regions.

Besides the list of input points, the filter requires an input region ids array which labels the points as belonging to different regions. This point data region ids array should be of integer type (vtkIntArray), with region id values>=0 (although a region id < 0 indicates that the associated point is "outside"; consequently the point will not produce output but will affect neighboring points in terms of producing boundary faces). In addition, the filter requires the specification of the segmented regions to extract by specifying one or more labels. (If labels are not specified, than all non-negative region ids are assumed to be a label. Automatically generating labels can be slow, it is preferred that labels are specified.)

The surface net algorithm can also (optionally) smooth the output polygonal surface. To be faithful to the original algorithm, a vtkConstrainedSmoothingFilter is used; however other smoothing algorithms such as vtkWindowedSincPolyDataFilter may be used (by disabling smoothing, enabling point merging, and passing the output of the filter to subsequent smoothing filter).

Note that the class vtkVoronoi3D can also generate a surface net. However the difference is that in vtkGeneralizedSurfaceNets3D the label values are explicitly specified, only specified labels may generate surfaces. The class vtkVoronoi3D will generate surfaces for each non-negative region id enumerated in the region ids array. In addition, vtkGeneralizedSurfaceNets3D has the ability to smooth the resulting surfaces, as well as perform auxiliary functions such as triangulating the output polygons.

There are two common use cases when using this filter. The first case simply produces output surface net faces for the purposes of visualization. In this case the resulting surfaces are not watertight and cannot be smoothed (so-called meshless complex of polygons). (Note that non-smoothed surface nets tend to be choppy depending on the input point cloud resolution.) The second case produces connected, watertight surface meshes which can be smoothed. Note that this second case requires a fair amount of work to merge nearly coincident points to produce the watertight surfaces. (Note: a built-in topologically-based point merging process is used. Users can disable the built in point merging process, and use subsequent filters like vtkStaticCleanPolyData to merge coincident points, remove degenerate face primitives, etc, and otherwise process the surfaces with smoothing etc. vtkStaticCleanPolyData uses a proximal geometric point merging process requiring a tolerance, this can cause problems in some cases.)

Finally, another important option to the filter is that capping surfaces corresponding to the domain boundary can be generated. In some cases it is useful to provide the boundary as context to the surface net contours. (The domain boundary is determined from Voronoi edges that connect to the domain edges, or connect to points with region ids < 0).

See the following reference for more details about surface nets: W. Schroeder, S. Tsalikis, M. Halle, S. Frisken. A High-Performance SurfaceNets Discrete Isocontouring Algorithm. arXiv:2401.14906. 2024. (http://arxiv.org/abs/2401.14906).

The Surface Nets algorithm was first proposed by Sarah Frisken. Two important papers include the description of surface nets for binary objects (i.e., extracting just one segmented object from a volume) and multi-label (multiple object extraction).

S. Frisken (Gibson), “Constrained Elastic SurfaceNets: Generating Smooth Surfaces from Binary Segmented Data”, Proc. MICCAI, 1998, pp. 888-898.

S. Frisken, “SurfaceNets for Multi-Label Segmentations with Preservation of Sharp Boundaries”, J. Computer Graphics Techniques, 2022.

These techniques referenced above are specialized to input 3D labeled (or segmented) volumes. This filter implementes a generalized version of surface nets for labeled, unorganized point clouds.

Note
There are several utility classes that can be used with vtkGeneralizedSurfaceNets3D (and related classes such as vtkVoronoi3D) to prepare data and improve performance.
vtkFillPointCloud can add points to a set of input points P. These points
are labeled "outside" of P, placed in areas where no existing points exist
in P. Adding these outside points can markedly improve performance and
improve the quality of the output mesh.
vtkLabeledImagePointSampler can be used to transform a segmented image
into a point cloud suitable for processing by vtkVoronoi3D (and related
filters). By using this filter along with image crop filters it is
possible to "snip" out areas of interest, producing a sample of points
and processing them as an input point cloud.
vtkJogglePoints can be used to improve the performance and quality of the
output mesh. Voronoi and Delaunay methods are known for their sensitivity
to numerical degeneracies (e.g., more than n+1 points cospherical to a
n-dimensional simplex in a n-dimensional Delaunay trianglulation). The
filter randomly perturbs (i.e., joggles or jitters) a point set thereby
removing degeneracies.
Warning
Coincident input points are discarded. The Voronoi tessellation requires unique input points.
This class has been threaded with vtkSMPTools. Using TBB or other non-sequential type (set in the CMake variable VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
See also
vtkSurfaceNets2D vtkSurfaceNets3D vtkVoronoi3D vtkVoronoiCore3D vtkShellBinIterator vtkConstrainedSmoothingFilter vtkWindowedSincPolyDataFilter
Tests:
vtkGeneralizedSurfaceNets3D (Tests)

Definition at line 141 of file vtkGeneralizedSurfaceNets3D.h.

Member Typedef Documentation

◆ Superclass

Standard methods for instantiation, type information, and printing.

Definition at line 150 of file vtkGeneralizedSurfaceNets3D.h.

Member Enumeration Documentation

◆ MeshType

This enum is used to control the type of the output polygonal mesh.

vtkGeneralizedSurfaceNets3D creates convex polygons; but for smoothing and subsequent processing, triangles are preferred (triangles are default).

Enumerator
MESH_TYPE_DEFAULT 
MESH_TYPE_TRIANGLES 
MESH_TYPE_POLYGONS 

Definition at line 367 of file vtkGeneralizedSurfaceNets3D.h.

Constructor & Destructor Documentation

◆ vtkGeneralizedSurfaceNets3D()

vtkGeneralizedSurfaceNets3D::vtkGeneralizedSurfaceNets3D ( )
protected

◆ ~vtkGeneralizedSurfaceNets3D()

vtkGeneralizedSurfaceNets3D::~vtkGeneralizedSurfaceNets3D ( )
overrideprotecteddefault

Member Function Documentation

◆ New()

static vtkGeneralizedSurfaceNets3D * vtkGeneralizedSurfaceNets3D::New ( )
static

Standard methods for instantiation, type information, and printing.

◆ IsTypeOf()

static vtkTypeBool vtkGeneralizedSurfaceNets3D::IsTypeOf ( const char * type)
static

Standard methods for instantiation, type information, and printing.

◆ IsA()

virtual vtkTypeBool vtkGeneralizedSurfaceNets3D::IsA ( const char * type)
virtual

Standard methods for instantiation, type information, and printing.

Reimplemented from vtkPolyDataAlgorithm.

◆ SafeDownCast()

static vtkGeneralizedSurfaceNets3D * vtkGeneralizedSurfaceNets3D::SafeDownCast ( vtkObjectBase * o)
static

Standard methods for instantiation, type information, and printing.

◆ NewInstanceInternal()

virtual vtkObjectBase * vtkGeneralizedSurfaceNets3D::NewInstanceInternal ( ) const
protectedvirtual

Standard methods for instantiation, type information, and printing.

Reimplemented from vtkPolyDataAlgorithm.

◆ NewInstance()

vtkGeneralizedSurfaceNets3D * vtkGeneralizedSurfaceNets3D::NewInstance ( ) const

Standard methods for instantiation, type information, and printing.

◆ PrintSelf()

void vtkGeneralizedSurfaceNets3D::PrintSelf ( ostream & os,
vtkIndent indent )
overridevirtual

Standard methods for instantiation, type information, and printing.

Reimplemented from vtkAlgorithm.

◆ SetValue()

void vtkGeneralizedSurfaceNets3D::SetValue ( int i,
double value )
inline

Set a particular label value at label number i.

The index i ranges between (0 <= i < NumberOfLabels). (Note: while labels values are expressed as doubles, the underlying scalar data may be a different type. During execution the label values are cast to the type of the scalar data.) Note the use of "Value" and "Label" when specifying regions to extract. The use of "Value" is consistent with other VTK continuous-scalar field isocontouring algorithms; however the term "Label" is more consistent with label maps. Warning: make sure that the label value >= 0 as any label < 0 is considered a background, i.e., outside, label.

Definition at line 170 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetLabel()

void vtkGeneralizedSurfaceNets3D::SetLabel ( int i,
double value )
inline

Set a particular label value at label number i.

The index i ranges between (0 <= i < NumberOfLabels). (Note: while labels values are expressed as doubles, the underlying scalar data may be a different type. During execution the label values are cast to the type of the scalar data.) Note the use of "Value" and "Label" when specifying regions to extract. The use of "Value" is consistent with other VTK continuous-scalar field isocontouring algorithms; however the term "Label" is more consistent with label maps. Warning: make sure that the label value >= 0 as any label < 0 is considered a background, i.e., outside, label.

Definition at line 171 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetValue()

double vtkGeneralizedSurfaceNets3D::GetValue ( int i)
inline

Get the ith label value.

Definition at line 178 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetLabel()

double vtkGeneralizedSurfaceNets3D::GetLabel ( int i)
inline

Get the ith label value.

Definition at line 179 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetValues() [1/2]

double * vtkGeneralizedSurfaceNets3D::GetValues ( )
inline

Get a pointer to an array of labels.

There will be GetNumberOfLabels() values in the list.

Definition at line 187 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetLabels() [1/2]

double * vtkGeneralizedSurfaceNets3D::GetLabels ( )
inline

Get a pointer to an array of labels.

There will be GetNumberOfLabels() values in the list.

Definition at line 188 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetValues() [2/2]

void vtkGeneralizedSurfaceNets3D::GetValues ( double * contourValues)
inline

Fill a supplied list with label values.

There will be GetNumberOfLabels() values in the list. Make sure you allocate enough memory to hold the list.

Definition at line 197 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetLabels() [2/2]

void vtkGeneralizedSurfaceNets3D::GetLabels ( double * contourValues)
inline

Fill a supplied list with label values.

There will be GetNumberOfLabels() values in the list. Make sure you allocate enough memory to hold the list.

Definition at line 198 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetNumberOfLabels()

void vtkGeneralizedSurfaceNets3D::SetNumberOfLabels ( int number)
inline

Set the number of labels to place into the list.

You only really need to use this method to reduce list size. The method SetValue() will automatically increase list size as needed. Note that for consistency with other isocountoring-related algorithms, some methods use "Labels" and "Contours" interchangeably.

Definition at line 209 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetNumberOfContours()

void vtkGeneralizedSurfaceNets3D::SetNumberOfContours ( int number)
inline

Set the number of labels to place into the list.

You only really need to use this method to reduce list size. The method SetValue() will automatically increase list size as needed. Note that for consistency with other isocountoring-related algorithms, some methods use "Labels" and "Contours" interchangeably.

Definition at line 210 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetNumberOfLabels()

vtkIdType vtkGeneralizedSurfaceNets3D::GetNumberOfLabels ( )
inline

Get the number of labels in the list of label values.

Definition at line 217 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetNumberOfContours()

vtkIdType vtkGeneralizedSurfaceNets3D::GetNumberOfContours ( )
inline

Get the number of labels in the list of label values.

Definition at line 218 of file vtkGeneralizedSurfaceNets3D.h.

◆ GenerateLabels() [1/2]

void vtkGeneralizedSurfaceNets3D::GenerateLabels ( int numLabels,
double range[2] )
inline

Generate numLabels equally spaced labels between the specified range.

The labels will include the min/max range values.

Definition at line 226 of file vtkGeneralizedSurfaceNets3D.h.

◆ GenerateValues() [1/2]

void vtkGeneralizedSurfaceNets3D::GenerateValues ( int numContours,
double range[2] )
inline

Generate numLabels equally spaced labels between the specified range.

The labels will include the min/max range values.

Definition at line 230 of file vtkGeneralizedSurfaceNets3D.h.

◆ GenerateLabels() [2/2]

void vtkGeneralizedSurfaceNets3D::GenerateLabels ( int numLabels,
double rangeStart,
double rangeEnd )
inline

Generate numLabels equally spaced labels between the specified range.

The labels will include the min/max range values.

Definition at line 234 of file vtkGeneralizedSurfaceNets3D.h.

◆ GenerateValues() [2/2]

void vtkGeneralizedSurfaceNets3D::GenerateValues ( int numContours,
double rangeStart,
double rangeEnd )
inline

Generate numLabels equally spaced labels between the specified range.

The labels will include the min/max range values.

Definition at line 238 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetBackgroundLabel()

virtual void vtkGeneralizedSurfaceNets3D::SetBackgroundLabel ( int )
virtual

This value specifies the label value to use when indicating that a region is outside.

That is, the output 2-tuple cell data array indicates which segmented region is on either side of it. To indicate that one side is on the boundary, the BackgroundLabel value is used. By default the background label is (-100).

◆ GetBackgroundLabel()

virtual int vtkGeneralizedSurfaceNets3D::GetBackgroundLabel ( )
virtual

This value specifies the label value to use when indicating that a region is outside.

That is, the output 2-tuple cell data array indicates which segmented region is on either side of it. To indicate that one side is on the boundary, the BackgroundLabel value is used. By default the background label is (-100).

◆ GetBoundaryCapping()

virtual vtkTypeBool vtkGeneralizedSurfaceNets3D::GetBoundaryCapping ( )
virtual

Specify whether to cap the surface net along the boundary.

By default this is off.

◆ SetBoundaryCapping()

virtual void vtkGeneralizedSurfaceNets3D::SetBoundaryCapping ( vtkTypeBool )
virtual

Specify whether to cap the surface net along the boundary.

By default this is off.

◆ BoundaryCappingOn()

virtual void vtkGeneralizedSurfaceNets3D::BoundaryCappingOn ( )
virtual

Specify whether to cap the surface net along the boundary.

By default this is off.

◆ BoundaryCappingOff()

virtual void vtkGeneralizedSurfaceNets3D::BoundaryCappingOff ( )
virtual

Specify whether to cap the surface net along the boundary.

By default this is off.

◆ GetMergePoints()

virtual vtkTypeBool vtkGeneralizedSurfaceNets3D::GetMergePoints ( )
virtual

Specify whether to merge nearly concident points in order to produce watertight output surfaces.

Enabling merging is necessary to perform smoothing. However it does require significant time to compute. By default this is on.

◆ SetMergePoints()

virtual void vtkGeneralizedSurfaceNets3D::SetMergePoints ( vtkTypeBool )
virtual

Specify whether to merge nearly concident points in order to produce watertight output surfaces.

Enabling merging is necessary to perform smoothing. However it does require significant time to compute. By default this is on.

◆ MergePointsOn()

virtual void vtkGeneralizedSurfaceNets3D::MergePointsOn ( )
virtual

Specify whether to merge nearly concident points in order to produce watertight output surfaces.

Enabling merging is necessary to perform smoothing. However it does require significant time to compute. By default this is on.

◆ MergePointsOff()

virtual void vtkGeneralizedSurfaceNets3D::MergePointsOff ( )
virtual

Specify whether to merge nearly concident points in order to produce watertight output surfaces.

Enabling merging is necessary to perform smoothing. However it does require significant time to compute. By default this is on.

◆ SetSmoothing()

virtual void vtkGeneralizedSurfaceNets3D::SetSmoothing ( vtkTypeBool )
virtual

Indicate whether smoothing should be enabled.

By default, after the surface net is extracted, smoothing occurs using the built-in internal smoother, and MergePoints is enabled. To disable smoothing, simply invoke SmoothingOff(). (Note: disabling smoothing can be useful to visualize the initial surface net, or a different smoother is to be used later in the downstream visualization pipeline.)

◆ GetSmoothing()

virtual vtkTypeBool vtkGeneralizedSurfaceNets3D::GetSmoothing ( )
virtual

Indicate whether smoothing should be enabled.

By default, after the surface net is extracted, smoothing occurs using the built-in internal smoother, and MergePoints is enabled. To disable smoothing, simply invoke SmoothingOff(). (Note: disabling smoothing can be useful to visualize the initial surface net, or a different smoother is to be used later in the downstream visualization pipeline.)

◆ SmoothingOn()

virtual void vtkGeneralizedSurfaceNets3D::SmoothingOn ( )
virtual

Indicate whether smoothing should be enabled.

By default, after the surface net is extracted, smoothing occurs using the built-in internal smoother, and MergePoints is enabled. To disable smoothing, simply invoke SmoothingOff(). (Note: disabling smoothing can be useful to visualize the initial surface net, or a different smoother is to be used later in the downstream visualization pipeline.)

◆ SmoothingOff()

virtual void vtkGeneralizedSurfaceNets3D::SmoothingOff ( )
virtual

Indicate whether smoothing should be enabled.

By default, after the surface net is extracted, smoothing occurs using the built-in internal smoother, and MergePoints is enabled. To disable smoothing, simply invoke SmoothingOff(). (Note: disabling smoothing can be useful to visualize the initial surface net, or a different smoother is to be used later in the downstream visualization pipeline.)

◆ SetNumberOfIterations()

void vtkGeneralizedSurfaceNets3D::SetNumberOfIterations ( int n)
inline

Convenience methods that delegate to the internal smoothing filter follow below.

See the documentation for vtkConstrainedSmoothingFilter for more information.

Definition at line 299 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetNumberOfIterations()

int vtkGeneralizedSurfaceNets3D::GetNumberOfIterations ( )
inline

Convenience methods that delegate to the internal smoothing filter follow below.

See the documentation for vtkConstrainedSmoothingFilter for more information.

Definition at line 300 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetRelaxationFactor()

void vtkGeneralizedSurfaceNets3D::SetRelaxationFactor ( double f)
inline

Convenience methods that delegate to the internal smoothing filter follow below.

See the documentation for vtkConstrainedSmoothingFilter for more information.

Definition at line 301 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetRelaxationFactor()

double vtkGeneralizedSurfaceNets3D::GetRelaxationFactor ( )
inline

Convenience methods that delegate to the internal smoothing filter follow below.

See the documentation for vtkConstrainedSmoothingFilter for more information.

Definition at line 302 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetConstraintDistance()

void vtkGeneralizedSurfaceNets3D::SetConstraintDistance ( double d)
inline

Convenience methods that delegate to the internal smoothing filter follow below.

See the documentation for vtkConstrainedSmoothingFilter for more information.

Definition at line 303 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetConstraintDistance()

double vtkGeneralizedSurfaceNets3D::GetConstraintDistance ( )
inline

Convenience methods that delegate to the internal smoothing filter follow below.

See the documentation for vtkConstrainedSmoothingFilter for more information.

Definition at line 304 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetGenerateSmoothingStencils()

virtual void vtkGeneralizedSurfaceNets3D::SetGenerateSmoothingStencils ( vtkTypeBool )
virtual

Indicate whether this filter should produce smoothing stencils.

This only applies if Smoothing is enabled. By default (On), this filter will compute the stencils; otherwise (Off) an internal smoothing filter of type vtkConstrainedSmoothingFilter is used, and this internal filter generates the stencils used to perform smoothing iterations. Note that generating the smoothing stencils uses an evaluation of the topological coordinates to distinguish between fixed, edge, face, and unconstrained connections; whereas the internal vtkConstrainedSmoothingFilter simply joins all edge connected points and does not distinguish between different types of connections. Generating smoothing stencils (On) is typically faster compared to the internal vtkConstrainedSmoothingFilter or using other smoothing filters downstream in the visualization pipeline.

◆ GetGenerateSmoothingStencils()

virtual vtkTypeBool vtkGeneralizedSurfaceNets3D::GetGenerateSmoothingStencils ( )
virtual

Indicate whether this filter should produce smoothing stencils.

This only applies if Smoothing is enabled. By default (On), this filter will compute the stencils; otherwise (Off) an internal smoothing filter of type vtkConstrainedSmoothingFilter is used, and this internal filter generates the stencils used to perform smoothing iterations. Note that generating the smoothing stencils uses an evaluation of the topological coordinates to distinguish between fixed, edge, face, and unconstrained connections; whereas the internal vtkConstrainedSmoothingFilter simply joins all edge connected points and does not distinguish between different types of connections. Generating smoothing stencils (On) is typically faster compared to the internal vtkConstrainedSmoothingFilter or using other smoothing filters downstream in the visualization pipeline.

◆ GenerateSmoothingStencilsOn()

virtual void vtkGeneralizedSurfaceNets3D::GenerateSmoothingStencilsOn ( )
virtual

Indicate whether this filter should produce smoothing stencils.

This only applies if Smoothing is enabled. By default (On), this filter will compute the stencils; otherwise (Off) an internal smoothing filter of type vtkConstrainedSmoothingFilter is used, and this internal filter generates the stencils used to perform smoothing iterations. Note that generating the smoothing stencils uses an evaluation of the topological coordinates to distinguish between fixed, edge, face, and unconstrained connections; whereas the internal vtkConstrainedSmoothingFilter simply joins all edge connected points and does not distinguish between different types of connections. Generating smoothing stencils (On) is typically faster compared to the internal vtkConstrainedSmoothingFilter or using other smoothing filters downstream in the visualization pipeline.

◆ GenerateSmoothingStencilsOff()

virtual void vtkGeneralizedSurfaceNets3D::GenerateSmoothingStencilsOff ( )
virtual

Indicate whether this filter should produce smoothing stencils.

This only applies if Smoothing is enabled. By default (On), this filter will compute the stencils; otherwise (Off) an internal smoothing filter of type vtkConstrainedSmoothingFilter is used, and this internal filter generates the stencils used to perform smoothing iterations. Note that generating the smoothing stencils uses an evaluation of the topological coordinates to distinguish between fixed, edge, face, and unconstrained connections; whereas the internal vtkConstrainedSmoothingFilter simply joins all edge connected points and does not distinguish between different types of connections. Generating smoothing stencils (On) is typically faster compared to the internal vtkConstrainedSmoothingFilter or using other smoothing filters downstream in the visualization pipeline.

◆ SetSmoothingConstraints() [1/2]

virtual void vtkGeneralizedSurfaceNets3D::SetSmoothingConstraints ( unsigned char ,
unsigned char ,
unsigned char ,
unsigned char  )
virtual

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

◆ SetSmoothingConstraints() [2/2]

virtual void vtkGeneralizedSurfaceNets3D::SetSmoothingConstraints ( unsigned char [4])
virtual

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

◆ GetSmoothingConstraints() [1/3]

virtual unsigned char * vtkGeneralizedSurfaceNets3D::GetSmoothingConstraints ( )
virtual

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

◆ GetSmoothingConstraints() [2/3]

virtual void vtkGeneralizedSurfaceNets3D::GetSmoothingConstraints ( unsigned char & ,
unsigned char & ,
unsigned char & ,
unsigned char &  )
virtual

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

◆ GetSmoothingConstraints() [3/3]

virtual void vtkGeneralizedSurfaceNets3D::GetSmoothingConstraints ( unsigned char [4])
virtual

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

◆ AllSmoothingConstraintsOn()

void vtkGeneralizedSurfaceNets3D::AllSmoothingConstraintsOn ( )
inline

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

Definition at line 343 of file vtkGeneralizedSurfaceNets3D.h.

◆ AllSmoothingConstraintsOff()

void vtkGeneralizedSurfaceNets3D::AllSmoothingConstraintsOff ( )
inline

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

Definition at line 344 of file vtkGeneralizedSurfaceNets3D.h.

◆ EdgeSmoothingConstraintOff()

void vtkGeneralizedSurfaceNets3D::EdgeSmoothingConstraintOff ( )
inline

If GenerateSmoothingStencils is on, this provides some control over each point's stencil creation.

Four values can be set (0/1) corresponding to the type of constraint as determined by the topological coordinates. The first value [0] controls fixed points (topological coordinate spans four regions, e.g., a corner); edge points [1] (topological coordinate spans three regions along sharp edge); face points [2] (topological coordinates span two regions along face); and unconstrained [3] (topological coordinates span a single region). By default, the smoothing constraints are all disabled ==[0,0,0,0]. Other common options are all unconstrained ==[1,1,1,1]; and edges unconstrained ==[1,0,1,1].

Definition at line 345 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetSmoother()

virtual vtkConstrainedSmoothingFilter * vtkGeneralizedSurfaceNets3D::GetSmoother ( )
virtual

Get the internal instance of vtkConstrainedSmoothingFilter used to smooth the extracted surface net.

To control smoothing, access this instance and specify its parameters such as number of smoothing iterations and constraint distance. If you wish to disable smoothing, set SmoothingOff(). Note also that by default vtkConstrainedSmoothingFilter will compute smoothing stencils; however if GenerateSmoothingStencils is on, then this filter will provide the stencils.

◆ SetOutputMeshType()

virtual void vtkGeneralizedSurfaceNets3D::SetOutputMeshType ( int )
virtual

Control the type of output mesh.

By default, if smoothing is off, the output mesh is a polygonal mesh consisting of convex polygons. However, if smoothing is enabled, then the output mesh type is a polygonal mesh consisting of triangles. It is possible to force the output mesh type to be of a certain type (triangles, or convex polygons) regardless whether smoothing is enabled or not. Note that if an output mesh is forced to be polygons, and smoothing is enabled, the resulting smoothed polygons may not be planar.

◆ GetOutputMeshType()

virtual int vtkGeneralizedSurfaceNets3D::GetOutputMeshType ( )
virtual

Control the type of output mesh.

By default, if smoothing is off, the output mesh is a polygonal mesh consisting of convex polygons. However, if smoothing is enabled, then the output mesh type is a polygonal mesh consisting of triangles. It is possible to force the output mesh type to be of a certain type (triangles, or convex polygons) regardless whether smoothing is enabled or not. Note that if an output mesh is forced to be polygons, and smoothing is enabled, the resulting smoothed polygons may not be planar.

◆ SetOutputMeshTypeToDefault()

void vtkGeneralizedSurfaceNets3D::SetOutputMeshTypeToDefault ( )
inline

Control the type of output mesh.

By default, if smoothing is off, the output mesh is a polygonal mesh consisting of convex polygons. However, if smoothing is enabled, then the output mesh type is a polygonal mesh consisting of triangles. It is possible to force the output mesh type to be of a certain type (triangles, or convex polygons) regardless whether smoothing is enabled or not. Note that if an output mesh is forced to be polygons, and smoothing is enabled, the resulting smoothed polygons may not be planar.

Definition at line 387 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetOutputMeshTypeToTriangles()

void vtkGeneralizedSurfaceNets3D::SetOutputMeshTypeToTriangles ( )
inline

Control the type of output mesh.

By default, if smoothing is off, the output mesh is a polygonal mesh consisting of convex polygons. However, if smoothing is enabled, then the output mesh type is a polygonal mesh consisting of triangles. It is possible to force the output mesh type to be of a certain type (triangles, or convex polygons) regardless whether smoothing is enabled or not. Note that if an output mesh is forced to be polygons, and smoothing is enabled, the resulting smoothed polygons may not be planar.

Definition at line 388 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetOutputMeshTypeToPolygons()

void vtkGeneralizedSurfaceNets3D::SetOutputMeshTypeToPolygons ( )
inline

Control the type of output mesh.

By default, if smoothing is off, the output mesh is a polygonal mesh consisting of convex polygons. However, if smoothing is enabled, then the output mesh type is a polygonal mesh consisting of triangles. It is possible to force the output mesh type to be of a certain type (triangles, or convex polygons) regardless whether smoothing is enabled or not. Note that if an output mesh is forced to be polygons, and smoothing is enabled, the resulting smoothed polygons may not be planar.

Definition at line 389 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetPadding()

virtual void vtkGeneralizedSurfaceNets3D::SetPadding ( double )
virtual

Specify a padding for the bounding box of the input points.

A >0 padding is necessary in order to create valid Voronoi hulls on the boundary of the tessellation. The padding is specified as a fraction of the diagonal length of the bounding box of the points.

◆ GetPadding()

virtual double vtkGeneralizedSurfaceNets3D::GetPadding ( )
virtual

Specify a padding for the bounding box of the input points.

A >0 padding is necessary in order to create valid Voronoi hulls on the boundary of the tessellation. The padding is specified as a fraction of the diagonal length of the bounding box of the points.

◆ GetLocator()

vtkStaticPointLocator * vtkGeneralizedSurfaceNets3D::GetLocator ( )
inline

Retrieve the internal locator to manually configure it, for example specifying the number of points per bucket.

This method is generally used for debugging or testing purposes.

Definition at line 409 of file vtkGeneralizedSurfaceNets3D.h.

◆ SetValidate()

virtual void vtkGeneralizedSurfaceNets3D::SetValidate ( vtkTypeBool )
virtual

Enable the validation of the Voronoi tesselation.

Enabling validation increases computation time. By default, validation is off. Validation is a necessary condition that must be satisfied to produce a valid output tessellation.

◆ GetValidate()

virtual vtkTypeBool vtkGeneralizedSurfaceNets3D::GetValidate ( )
virtual

Enable the validation of the Voronoi tesselation.

Enabling validation increases computation time. By default, validation is off. Validation is a necessary condition that must be satisfied to produce a valid output tessellation.

◆ ValidateOn()

virtual void vtkGeneralizedSurfaceNets3D::ValidateOn ( )
virtual

Enable the validation of the Voronoi tesselation.

Enabling validation increases computation time. By default, validation is off. Validation is a necessary condition that must be satisfied to produce a valid output tessellation.

◆ ValidateOff()

virtual void vtkGeneralizedSurfaceNets3D::ValidateOff ( )
virtual

Enable the validation of the Voronoi tesselation.

Enabling validation increases computation time. By default, validation is off. Validation is a necessary condition that must be satisfied to produce a valid output tessellation.

◆ SetPointOfInterest()

virtual void vtkGeneralizedSurfaceNets3D::SetPointOfInterest ( vtkIdType )
virtual

These methods are for debugging or instructional purposes.

When the point of interest is specified (i.e., set to a non-negative number) then the algorithm will process this single point (whose id is the PointOfInterest). When PointsOfInterest is specified through a supplied vtkIdTypeArray (this is in addition to the PointOfInterest), then only those hulls in the PointOfInterest + PointsOfInterestArray will be produced. The maximum number of clips (the MaximumNumberOfHullClips) can be specified. If MaximumNumberOfHullClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfHullClips=VTK_ID_MAX and therefore automatically limited by the algorithm).

◆ GetPointOfInterest()

virtual vtkIdType vtkGeneralizedSurfaceNets3D::GetPointOfInterest ( )
virtual

These methods are for debugging or instructional purposes.

When the point of interest is specified (i.e., set to a non-negative number) then the algorithm will process this single point (whose id is the PointOfInterest). When PointsOfInterest is specified through a supplied vtkIdTypeArray (this is in addition to the PointOfInterest), then only those hulls in the PointOfInterest + PointsOfInterestArray will be produced. The maximum number of clips (the MaximumNumberOfHullClips) can be specified. If MaximumNumberOfHullClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfHullClips=VTK_ID_MAX and therefore automatically limited by the algorithm).

◆ SetPointsOfInterest()

virtual void vtkGeneralizedSurfaceNets3D::SetPointsOfInterest ( vtkIdTypeArray * )
virtual

These methods are for debugging or instructional purposes.

When the point of interest is specified (i.e., set to a non-negative number) then the algorithm will process this single point (whose id is the PointOfInterest). When PointsOfInterest is specified through a supplied vtkIdTypeArray (this is in addition to the PointOfInterest), then only those hulls in the PointOfInterest + PointsOfInterestArray will be produced. The maximum number of clips (the MaximumNumberOfHullClips) can be specified. If MaximumNumberOfHullClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfHullClips=VTK_ID_MAX and therefore automatically limited by the algorithm).

◆ GetPointsOfInterest()

virtual vtkIdTypeArray * vtkGeneralizedSurfaceNets3D::GetPointsOfInterest ( )
virtual

These methods are for debugging or instructional purposes.

When the point of interest is specified (i.e., set to a non-negative number) then the algorithm will process this single point (whose id is the PointOfInterest). When PointsOfInterest is specified through a supplied vtkIdTypeArray (this is in addition to the PointOfInterest), then only those hulls in the PointOfInterest + PointsOfInterestArray will be produced. The maximum number of clips (the MaximumNumberOfHullClips) can be specified. If MaximumNumberOfHullClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfHullClips=VTK_ID_MAX and therefore automatically limited by the algorithm).

◆ SetMaximumNumberOfHullClips()

virtual void vtkGeneralizedSurfaceNets3D::SetMaximumNumberOfHullClips ( vtkIdType )
virtual

These methods are for debugging or instructional purposes.

When the point of interest is specified (i.e., set to a non-negative number) then the algorithm will process this single point (whose id is the PointOfInterest). When PointsOfInterest is specified through a supplied vtkIdTypeArray (this is in addition to the PointOfInterest), then only those hulls in the PointOfInterest + PointsOfInterestArray will be produced. The maximum number of clips (the MaximumNumberOfHullClips) can be specified. If MaximumNumberOfHullClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfHullClips=VTK_ID_MAX and therefore automatically limited by the algorithm).

◆ GetMaximumNumberOfHullClips()

virtual vtkIdType vtkGeneralizedSurfaceNets3D::GetMaximumNumberOfHullClips ( )
virtual

These methods are for debugging or instructional purposes.

When the point of interest is specified (i.e., set to a non-negative number) then the algorithm will process this single point (whose id is the PointOfInterest). When PointsOfInterest is specified through a supplied vtkIdTypeArray (this is in addition to the PointOfInterest), then only those hulls in the PointOfInterest + PointsOfInterestArray will be produced. The maximum number of clips (the MaximumNumberOfHullClips) can be specified. If MaximumNumberOfHullClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfHullClips=VTK_ID_MAX and therefore automatically limited by the algorithm).

◆ SetPruneTolerance()

virtual void vtkGeneralizedSurfaceNets3D::SetPruneTolerance ( double )
virtual

Specify a relative tolerance to determine which spokes (i.e., small hull facets) to prune.

See vtkVoronoiHull for more information.

◆ GetPruneTolerance()

virtual double vtkGeneralizedSurfaceNets3D::GetPruneTolerance ( )
virtual

Specify a relative tolerance to determine which spokes (i.e., small hull facets) to prune.

See vtkVoronoiHull for more information.

◆ SetBatchSize()

virtual void vtkGeneralizedSurfaceNets3D::SetBatchSize ( unsigned int )
virtual

Specify the number of input generating points in a batch, where a batch defines a contiguous subset of the input points operated on during threaded execution.

Generally this is only used for debugging or performance studies (since batch size affects the thread workload).

Default is 1000.

◆ GetBatchSize()

virtual unsigned int vtkGeneralizedSurfaceNets3D::GetBatchSize ( )
virtual

Specify the number of input generating points in a batch, where a batch defines a contiguous subset of the input points operated on during threaded execution.

Generally this is only used for debugging or performance studies (since batch size affects the thread workload).

Default is 1000.

◆ GetNumberOfThreads()

int vtkGeneralizedSurfaceNets3D::GetNumberOfThreads ( )
inline

Return the number of threads actually used during execution.

This is valid only after algorithm execution.

Definition at line 474 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetNumberOfPrunes()

int vtkGeneralizedSurfaceNets3D::GetNumberOfPrunes ( )
inline

Return the number of hull prunes performed during execution.

This is valid only after algorithm execution.

Definition at line 480 of file vtkGeneralizedSurfaceNets3D.h.

◆ GetMTime()

vtkMTimeType vtkGeneralizedSurfaceNets3D::GetMTime ( )
overridevirtual

The modified time is also a function of the built in locator, smoothing filter, and label values.

Reimplemented from vtkObject.

◆ RequestData()

int vtkGeneralizedSurfaceNets3D::RequestData ( vtkInformation * request,
vtkInformationVector ** inputVector,
vtkInformationVector * outputVector )
overrideprotectedvirtual

This is called by the superclass.

This is the method you should override.

Reimplemented from vtkPolyDataAlgorithm.

◆ FillInputPortInformation()

int vtkGeneralizedSurfaceNets3D::FillInputPortInformation ( int port,
vtkInformation * info )
overrideprotectedvirtual

Fill the input port information objects for this algorithm.

This is invoked by the first call to GetInputPortInformation for each port so subclasses can specify what they can handle.

Reimplemented from vtkAlgorithm.

Member Data Documentation

◆ Labels

vtkSmartPointer<vtkContourValues> vtkGeneralizedSurfaceNets3D::Labels
protected

Definition at line 493 of file vtkGeneralizedSurfaceNets3D.h.

◆ BackgroundLabel

int vtkGeneralizedSurfaceNets3D::BackgroundLabel
protected

Definition at line 494 of file vtkGeneralizedSurfaceNets3D.h.

◆ BoundaryCapping

vtkTypeBool vtkGeneralizedSurfaceNets3D::BoundaryCapping
protected

Definition at line 497 of file vtkGeneralizedSurfaceNets3D.h.

◆ MergePoints

vtkTypeBool vtkGeneralizedSurfaceNets3D::MergePoints
protected

Definition at line 498 of file vtkGeneralizedSurfaceNets3D.h.

◆ Smoothing

vtkTypeBool vtkGeneralizedSurfaceNets3D::Smoothing
protected

Definition at line 499 of file vtkGeneralizedSurfaceNets3D.h.

◆ Smoother

vtkSmartPointer<vtkConstrainedSmoothingFilter> vtkGeneralizedSurfaceNets3D::Smoother
protected

Definition at line 502 of file vtkGeneralizedSurfaceNets3D.h.

◆ Locator

vtkSmartPointer<vtkStaticPointLocator> vtkGeneralizedSurfaceNets3D::Locator
protected

Definition at line 503 of file vtkGeneralizedSurfaceNets3D.h.

◆ OutputMeshType

int vtkGeneralizedSurfaceNets3D::OutputMeshType
protected

Definition at line 506 of file vtkGeneralizedSurfaceNets3D.h.

◆ Padding

double vtkGeneralizedSurfaceNets3D::Padding
protected

Definition at line 509 of file vtkGeneralizedSurfaceNets3D.h.

◆ Validate

vtkTypeBool vtkGeneralizedSurfaceNets3D::Validate
protected

Definition at line 510 of file vtkGeneralizedSurfaceNets3D.h.

◆ GenerateSmoothingStencils

vtkTypeBool vtkGeneralizedSurfaceNets3D::GenerateSmoothingStencils
protected

Definition at line 511 of file vtkGeneralizedSurfaceNets3D.h.

◆ SmoothingConstraints

unsigned char vtkGeneralizedSurfaceNets3D::SmoothingConstraints[4]
protected

Definition at line 512 of file vtkGeneralizedSurfaceNets3D.h.

◆ PointOfInterest

vtkIdType vtkGeneralizedSurfaceNets3D::PointOfInterest
protected

Definition at line 513 of file vtkGeneralizedSurfaceNets3D.h.

◆ PointsOfInterest

vtkSmartPointer<vtkIdTypeArray> vtkGeneralizedSurfaceNets3D::PointsOfInterest
protected

Definition at line 514 of file vtkGeneralizedSurfaceNets3D.h.

◆ MaximumNumberOfHullClips

vtkIdType vtkGeneralizedSurfaceNets3D::MaximumNumberOfHullClips
protected

Definition at line 515 of file vtkGeneralizedSurfaceNets3D.h.

◆ PruneTolerance

double vtkGeneralizedSurfaceNets3D::PruneTolerance
protected

Definition at line 516 of file vtkGeneralizedSurfaceNets3D.h.

◆ BatchSize

unsigned int vtkGeneralizedSurfaceNets3D::BatchSize
protected

Definition at line 517 of file vtkGeneralizedSurfaceNets3D.h.

◆ NumberOfThreads

int vtkGeneralizedSurfaceNets3D::NumberOfThreads
protected

Definition at line 518 of file vtkGeneralizedSurfaceNets3D.h.

◆ NumberOfPrunes

int vtkGeneralizedSurfaceNets3D::NumberOfPrunes
protected

Definition at line 519 of file vtkGeneralizedSurfaceNets3D.h.


The documentation for this class was generated from the following file: