4#ifndef vtkVolumeShaderComposer_h
5#define vtkVolumeShaderComposer_h
26 for (
auto& item : inputs)
39 for (
auto& item : inputs)
42 const bool lighting = volProp->
GetShade() == 1;
51 for (
auto& item : inputs)
55 if (useClippedVoxelIntensity)
63inline std::string ArrayBaseName(
const std::string& arrayName)
65 return arrayName.substr(0, arrayName.length() - 3);
77VTK_ABI_NAMESPACE_BEGIN
83 " //Transform vertex (data coordinates) to clip coordinates\n"
84 " // p_clip = T_ProjViewModel * T_dataToWorld * p_data\n"
85 " vec4 pos = in_projectionMatrix * in_modelViewMatrix * in_volumeMatrix[0] *\n"
86 " vec4(in_vertexPos.xyz, 1.0);\n"
87 " gl_Position = pos;\n");
95 " // Transform vertex (data coordinates) to texture coordinates.\n"
96 " // p_texture = T_dataToTex * p_data\n"
97 " vec3 uvx = sign(in_cellSpacing[0]) * (in_inverseTextureDatasetMatrix[0] *\n"
98 " vec4(in_vertexPos, 1.0)).xyz;\n"
100 " // For point dataset, we offset the texture coordinate\n"
101 " // to account for OpenGL treating voxel at the center of the cell.\n"
102 " // Transform cell tex-coordinates to point tex-coordinates (cellToPoint\n"
103 " // is an identity matrix in the case of cell data).\n"
104 " ip_textureCoords = (in_cellToPoint[0] * vec4(uvx, 1.0)).xyz;\n"
105 " ip_inverseTextureDataAdjusted = in_cellToPoint[0] * in_inverseTextureDatasetMatrix[0];\n");
110 vtkVolume* vtkNotUsed(vol),
bool multipleInputs)
113 const int numInputs = gpuMapper->GetInputCount();
115 std::ostringstream ss;
116 ss <<
"uniform vec3 in_cellSpacing[" << numInputs
118 "uniform mat4 in_modelViewMatrix;\n"
119 "uniform mat4 in_projectionMatrix;\n";
121 const int numTransf = multipleInputs ? numInputs + 1 : 1;
122 ss <<
"uniform mat4 in_volumeMatrix[" << numTransf
124 "uniform mat4 in_inverseTextureDatasetMatrix["
127 "uniform mat4 in_cellToPoint["
131 "//This variable could be 'invariant varying' but it is declared\n"
132 "//as 'varying' to avoid compiler compatibility issues.\n"
133 "out mat4 ip_inverseTextureDataAdjusted;\n";
141 int numberPositionalLights,
bool defaultLighting,
int noOfComponents,
int independentComponents)
143 const int numInputs =
static_cast<int>(inputs.size());
145 std::ostringstream toShaderStr;
146 toShaderStr <<
"uniform sampler3D in_volume[" << numInputs <<
"];\n";
148 toShaderStr <<
"uniform vec4 in_volume_scale[" << numInputs
150 "uniform vec4 in_volume_bias["
151 << numInputs <<
"];\n";
155 toShaderStr <<
"uniform sampler1D in_coordTexs;\n";
156 toShaderStr <<
"uniform vec3 in_coordTexSizes;\n";
157 toShaderStr <<
"uniform vec3 in_coordsScale;\n";
158 toShaderStr <<
"uniform vec3 in_coordsBias;\n";
163 toShaderStr <<
"uniform sampler3D in_blanking;\n";
166 toShaderStr <<
"uniform int in_noOfComponents;\n"
168 "uniform sampler2D in_depthSampler;\n";
173 toShaderStr <<
"uniform sampler2D in_noiseSampler;\n";
178 const int numTransf = (numInputs > 1) ? numInputs + 1 : 1;
179 toShaderStr <<
"uniform mat4 in_volumeMatrix[" << numTransf
181 "uniform mat4 in_inverseVolumeMatrix["
184 "uniform mat4 in_textureDatasetMatrix["
187 "uniform mat4 in_inverseTextureDatasetMatrix["
190 "uniform mat4 in_textureToEye["
193 "uniform vec3 in_texMin["
196 "uniform vec3 in_texMax["
199 "// Eye position in dataset space\n"
200 "uniform vec3 in_eyePosObjs["
203 "uniform mat4 in_cellToPoint["
204 << numTransf <<
"];\n";
206 toShaderStr <<
"// view and model matrices\n"
207 "uniform mat4 in_projectionMatrix;\n"
208 "uniform mat4 in_inverseProjectionMatrix;\n"
209 "uniform mat4 in_modelViewMatrix;\n"
210 "uniform mat4 in_inverseModelViewMatrix;\n"
211 "in mat4 ip_inverseTextureDataAdjusted;\n"
214 "uniform vec3 in_cellStep["
215 << numInputs <<
"];\n";
220 toShaderStr <<
"mat4 g_eyeToTexture = in_inverseTextureDatasetMatrix[0] *"
221 " in_inverseVolumeMatrix[0] * in_inverseModelViewMatrix;\n";
224 if (inputs[0].Volume->GetProperty() && inputs[0].Volume->GetProperty()->GetShade() &&
225 !defaultLighting && totalNumberOfLights > 0)
227 toShaderStr <<
"mat4 g_texToView = in_modelViewMatrix * in_volumeMatrix[0] *"
228 "in_textureDatasetMatrix[0];\n";
231 toShaderStr <<
"uniform vec2 in_scalarsRange[" << numInputs * 4
233 "uniform vec3 in_cellSpacing["
237 "// Sample distance\n"
238 "uniform float in_sampleDistance;\n"
241 "uniform vec2 in_windowLowerLeftCorner;\n"
242 "uniform vec2 in_inverseOriginalWindowSize;\n"
243 "uniform vec2 in_inverseWindowSize;\n"
244 "uniform vec3 in_textureExtentsMax;\n"
245 "uniform vec3 in_textureExtentsMin;\n"
247 "// Material and lighting\n"
248 "uniform vec3 in_diffuse[4];\n"
249 "uniform vec3 in_ambient[4];\n"
250 "uniform vec3 in_specular[4];\n"
251 "uniform float in_shininess[4];\n"
254 "vec3 g_rayJitter = vec3(0.0);\n"
256 "uniform vec2 in_averageIPRange;\n";
258 const bool hasGradientOpacity = HasGradientOpacity(inputs);
259 if (totalNumberOfLights > 0 || hasGradientOpacity)
261 toShaderStr <<
"uniform bool in_twoSidedLighting;\n";
266 toShaderStr << R
"***(
267uniform float in_giReach;
268uniform float in_anisotropy;
269uniform float in_volumetricScatteringBlending;
274 if (totalNumberOfLights > 0)
276 std::string totalLights = std::to_string(totalNumberOfLights);
277 std::string positionalLights = std::to_string(numberPositionalLights);
279 if (!defaultLighting)
281 toShaderStr <<
"#define TOTAL_NUMBER_LIGHTS " << totalLights
283 "#define NUMBER_POS_LIGHTS "
286 "vec4 g_fragWorldPos;\n"
287 "uniform vec3 in_lightAmbientColor[TOTAL_NUMBER_LIGHTS];\n"
288 "uniform vec3 in_lightDiffuseColor[TOTAL_NUMBER_LIGHTS];\n"
289 "uniform vec3 in_lightSpecularColor[TOTAL_NUMBER_LIGHTS];\n"
290 "uniform vec3 in_lightDirection[TOTAL_NUMBER_LIGHTS];\n";
291 if (numberPositionalLights > 0)
293 toShaderStr <<
"uniform vec3 in_lightPosition[NUMBER_POS_LIGHTS];\n"
294 "uniform vec3 in_lightAttenuation[NUMBER_POS_LIGHTS];\n"
295 "uniform float in_lightConeAngle[NUMBER_POS_LIGHTS];\n"
296 "uniform float in_lightExponent[NUMBER_POS_LIGHTS];\n";
301 toShaderStr <<
"vec3 g_lightDirectionTex[TOTAL_NUMBER_LIGHTS];\n";
303 if (numberPositionalLights > 0)
305 toShaderStr <<
"vec3 g_lightPositionTex[NUMBER_POS_LIGHTS];\n";
311 toShaderStr <<
"uniform vec3 in_lightAmbientColor[1];\n"
312 "uniform vec3 in_lightDiffuseColor[1];\n"
313 "uniform vec3 in_lightSpecularColor[1];\n"
314 "vec4 g_lightPosObj["
324 << numInputs <<
"];\n";
328 if (noOfComponents > 1 && independentComponents)
330 toShaderStr <<
"uniform vec4 in_componentWeight;\n";
336 toShaderStr <<
"uniform sampler2D in_depthPassSampler;\n";
341 toShaderStr <<
"#if NUMBER_OF_CONTOURS\n"
342 "uniform float in_isosurfacesValues[NUMBER_OF_CONTOURS];\n"
344 "int findIsoSurfaceIndex(float scalar, float array[NUMBER_OF_CONTOURS+2])\n"
346 " int index = NUMBER_OF_CONTOURS >> 1;\n"
347 " while (scalar > array[index]) ++index;\n"
348 " while (scalar < array[index]) --index;\n"
355 vtkVolume* vol = inputs.begin()->second.Volume;
358 if (func && func->
IsA(
"vtkPlane"))
361 <<
"uniform vec3 in_slicePlaneOrigin;\n"
362 "uniform vec3 in_slicePlaneNormal;\n"
363 "vec3 g_intersection;\n"
365 "float intersectRayPlane(vec3 rayOrigin, vec3 rayDir)\n"
367 " vec4 planeNormal = in_inverseVolumeMatrix[0] * vec4(in_slicePlaneNormal, 0.0);\n"
368 " float denom = dot(planeNormal.xyz, rayDir);\n"
369 " if (abs(denom) > 1e-6)\n"
371 " vec4 planeOrigin = in_inverseVolumeMatrix[0] * vec4(in_slicePlaneOrigin, 1.0);\n"
372 " return dot(planeOrigin.xyz - rayOrigin, planeNormal.xyz) / denom;\n"
379 return toShaderStr.str();
387 vtkVolume* vol = inputs.begin()->second.Volume;
388 const int numInputs =
static_cast<int>(inputs.size());
390 std::ostringstream shaderStr;
396 \n vec2 fragTexCoord2 = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
397 \n in_inverseWindowSize;\
398 \n vec4 depthValue = texture2D(in_depthPassSampler, fragTexCoord2);\
399 \n vec4 rayOrigin = WindowToNDC(gl_FragCoord.x, gl_FragCoord.y, depthValue.x);\
401 \n // From normalized device coordinates to eye coordinates.\
402 \n // in_projectionMatrix is inversed because of way VT\
403 \n // From eye coordinates to texture coordinates\
404 \n rayOrigin = in_inverseTextureDatasetMatrix[0] *\
405 \n in_inverseVolumeMatrix[0] *\
406 \n in_inverseModelViewMatrix *\
407 \n in_inverseProjectionMatrix *\
409 \n rayOrigin /= rayOrigin.w;\
410 \n g_rayOrigin = rayOrigin.xyz;";
415 \n // Get the 3D texture coordinates for lookup into the in_volume dataset\
416 \n g_rayOrigin = ip_textureCoords.xyz;";
420 \n // Getting the ray marching direction (in dataset space)\
421 \n vec3 rayDir = computeRayDirection();\
423 \n // 2D Texture fragment coordinates [0,1] from fragment coordinates.\
424 \n // The frame buffer texture has the size of the plain buffer but \
425 \n // we use a fraction of it. The texture coordinate is less than 1 if\
426 \n // the reduction factor is less than 1.\
427 \n // Device coordinates are between -1 and 1. We need texture\
428 \n // coordinates between 0 and 1. The in_depthSampler\
429 \n // buffer has the original size buffer.\
430 \n vec2 fragTexCoord = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
431 \n in_inverseWindowSize;\
433 \n // Multiply the raymarching direction with the step size to get the\
434 \n // sub-step size we need to take at each raymarching step\
435 \n g_dirStep = (ip_inverseTextureDataAdjusted *\
436 \n vec4(rayDir, 0.0)).xyz * in_sampleDistance;\
437 \n g_lengthStep = length(g_dirStep);\
441 \n float jitterValue = 0.0;\
450 \n jitterValue = texture2D(in_noiseSampler, gl_FragCoord.xy /\
451 vec2(textureSize(in_noiseSampler, 0))).x;\
452 \n g_rayJitter = g_dirStep * jitterValue;\
458 \n g_rayJitter = g_dirStep;\
462 \n g_rayOrigin += g_rayJitter;\
467 \n // Flag to determine if voxel should be considered for the rendering\
473 \n // Light position in dataset space";
474 for (
int i = 0; i < numInputs; ++i)
479 << i <<
"] = vec4(in_eyePosObjs[" << (numInputs > 1 ? i + 1 : i) <<
"], 1.0);\
481 << i <<
"] = normalize(g_lightPosObj[" << i <<
"].xyz - ip_vertexPos);\
483 << i <<
"] = normalize(in_eyePosObjs[" << i <<
"].xyz - ip_vertexPos);\
485 << i <<
"] = normalize(g_ldir[" << i <<
"] + g_vdir[" << i <<
"]);";
489 return shaderStr.str();
499 \n g_skip = false;");
503 bool blankCells = (dataSet->GetCellGhostArray() !=
nullptr);
504 bool blankPoints = (dataSet->GetPointGhostArray() !=
nullptr);
505 if (blankPoints || blankCells)
507 str += std::string(
"\
508 \n // Check whether the neighboring points/cells are blank.\
509 \n // Note the half cellStep because texels are point centered.\
510 \n vec3 xvec = vec3(in_cellStep[0].x/2.0, 0.0, 0.0);\
511 \n vec3 yvec = vec3(0.0, in_cellStep[0].y/2.0, 0.0);\
512 \n vec3 zvec = vec3(0.0, 0.0, in_cellStep[0].z/2.0);\
513 \n vec3 texPosPVec[3];\
514 \n texPosPVec[0] = g_dataPos + xvec;\
515 \n texPosPVec[1] = g_dataPos + yvec;\
516 \n texPosPVec[2] = g_dataPos + zvec;\
517 \n vec3 texPosNVec[3];\
518 \n texPosNVec[0] = g_dataPos - xvec;\
519 \n texPosNVec[1] = g_dataPos - yvec;\
520 \n texPosNVec[2] = g_dataPos - zvec;\
521 \n vec4 blankValue = texture3D(in_blanking, g_dataPos);\
522 \n vec4 blankValueXP = texture3D(in_blanking, texPosPVec[0]);\
523 \n vec4 blankValueYP = texture3D(in_blanking, texPosPVec[1]);\
524 \n vec4 blankValueZP = texture3D(in_blanking, texPosPVec[2]);\
525 \n vec4 blankValueXN = texture3D(in_blanking, texPosNVec[0]);\
526 \n vec4 blankValueYN = texture3D(in_blanking, texPosNVec[1]);\
527 \n vec4 blankValueZN = texture3D(in_blanking, texPosNVec[2]);\
528 \n vec3 blankValuePx;\
529 \n blankValuePx[0] = blankValueXP.x;\
530 \n blankValuePx[1] = blankValueYP.x;\
531 \n blankValuePx[2] = blankValueZP.x;\
532 \n vec3 blankValuePy;\
533 \n blankValuePy[0] = blankValueXP.y;\
534 \n blankValuePy[1] = blankValueYP.y;\
535 \n blankValuePy[2] = blankValueZP.y;\
536 \n vec3 blankValueNx;\
537 \n blankValueNx[0] = blankValueXN.x;\
538 \n blankValueNx[1] = blankValueYN.x;\
539 \n blankValueNx[2] = blankValueZN.x;\
540 \n vec3 blankValueNy;\
541 \n blankValueNy[0] = blankValueXN.y;\
542 \n blankValueNy[1] = blankValueYN.y;\
543 \n blankValueNy[2] = blankValueZN.y;\
547 str += std::string(
"\
548 \n // If the current or neighboring points\
549 \n // (that belong to cells that share this texel) are blanked,\
550 \n // skip the texel. In other words, if point 1 were blank,\
551 \n // texels 0, 1 and 2 would have to be skipped.\
552 \n if (blankValue.x > 0.0 ||\
553 \n any(greaterThan(blankValueNx, vec3(0.0))) ||\
554 \n any(greaterThan(blankValuePx, vec3(0.0))))\
556 \n // skip this texel\
562 str += std::string(
"\
563 \n // If the current or previous cells (that share this texel)\
564 \n // are blanked, skip the texel. In other words, if cell 1\
565 \n // is blanked, texels 1 and 2 would have to be skipped.\
566 \n else if (blankValue.y > 0.0 ||\
567 \n any(greaterThan(blankValuePy, vec3(0.0))) ||\
568 \n any(greaterThan(blankValueNy, vec3(0.0))))\
570 \n // skip this texel\
578 str += std::string(
"\
579 \n // If the current or previous cells (that share this texel)\
580 \n // are blanked, skip the texel. In other words, if cell 1\
581 \n // is blanked, texels 1 and 2 would have to be skipped.\
582 \n if (blankValue.x > 0.0 ||\
583 \n any(greaterThan(blankValueNx, vec3(0.0))) ||\
584 \n any(greaterThan(blankValuePx, vec3(0.0))))\
586 \n // skip this texel\
595 str += std::string(
"\
596 \n g_dataPos = g_intersection;\
607 return std::string();
612 int independentComponents, std::map<int, std::string> gradientTableMap)
615 std::ostringstream ss;
616 if (volProperty->HasGradientOpacity())
618 ss <<
"uniform sampler2D " << ArrayBaseName(gradientTableMap[0]) <<
"[" << noOfComponents
621 bool useLabelGradientOpacity =
622 (volProperty->HasLabelGradientOpacity() && (noOfComponents == 1 || !independentComponents));
623 if (useLabelGradientOpacity)
625 ss <<
"uniform sampler2D in_labelMapGradientOpacity;\n";
628 std::string shaderStr = ss.str();
630 if (volProperty->HasGradientOpacity() && noOfComponents > 0)
632 if (noOfComponents == 1 || !independentComponents)
634 shaderStr += std::string(
"\
635 \nfloat computeGradientOpacity(vec4 grad)\
637 \n return texture2D(" +
638 gradientTableMap[0] +
", vec2(grad.w, 0.0)).r;\
643 shaderStr += std::string(
"\
644 \nfloat computeGradientOpacity(vec4 grad, int component)\
647 for (
int i = 0; i < noOfComponents; ++i)
649 std::ostringstream toString;
651 shaderStr += std::string(
"\
652 \n if (component == " +
653 toString.str() +
")");
655 shaderStr += std::string(
"\
657 \n return texture2D(" +
658 gradientTableMap[i] +
", vec2(grad.w, 0.0)).r;\
662 shaderStr += std::string(
"\
667 if (useLabelGradientOpacity)
669 shaderStr += std::string(
"\
670 \nfloat computeGradientOpacityForLabel(vec4 grad, float label)\
672 \n return texture2D(in_labelMapGradientOpacity, vec2(grad.w, label)).r;\
683 const bool hasLighting = HasLighting(inputs);
684 const bool hasGradientOp = HasGradientOpacity(inputs);
686 std::string shaderStr;
687 if (hasLighting || hasGradientOp)
689 shaderStr += std::string(
690 "// c is short for component\n"
691 "vec4 computeGradient(in vec3 texPos, in int c, in sampler3D volume,in int index)\n"
693 " // Approximate Nabla(F) derivatives with central differences.\n"
694 " vec3 g1; // F_front\n"
695 " vec3 g2; // F_back\n"
696 " vec3 xvec = vec3(in_cellStep[index].x, 0.0, 0.0);\n"
697 " vec3 yvec = vec3(0.0, in_cellStep[index].y, 0.0);\n"
698 " vec3 zvec = vec3(0.0, 0.0, in_cellStep[index].z);\n"
699 " vec3 texPosPvec[3];\n"
700 " texPosPvec[0] = texPos + xvec;\n"
701 " texPosPvec[1] = texPos + yvec;\n"
702 " texPosPvec[2] = texPos + zvec;\n"
703 " vec3 texPosNvec[3];\n"
704 " texPosNvec[0] = texPos - xvec;\n"
705 " texPosNvec[1] = texPos - yvec;\n"
706 " texPosNvec[2] = texPos - zvec;\n"
707 " g1.x = texture3D(volume, vec3(texPosPvec[0]))[c];\n"
708 " g1.y = texture3D(volume, vec3(texPosPvec[1]))[c];\n"
709 " g1.z = texture3D(volume, vec3(texPosPvec[2]))[c];\n"
710 " g2.x = texture3D(volume, vec3(texPosNvec[0]))[c];\n"
711 " g2.y = texture3D(volume, vec3(texPosNvec[1]))[c];\n"
712 " g2.z = texture3D(volume, vec3(texPosNvec[2]))[c];\n"
717 std::string(
" vec4 g1ObjDataPos[3], g2ObjDataPos[3];\n"
718 " for (int i = 0; i < 3; ++i)\n"
720 " g1ObjDataPos[i] = clip_texToObjMat * vec4(texPosPvec[i], 1.0);\n"
721 " if (g1ObjDataPos[i].w != 0.0)\n"
723 " g1ObjDataPos[i] /= g1ObjDataPos[i].w;\n"
725 " g2ObjDataPos[i] = clip_texToObjMat * vec4(texPosNvec[i], 1.0);\n"
726 " if (g2ObjDataPos[i].w != 0.0)\n"
728 " g2ObjDataPos[i] /= g2ObjDataPos[i].w;\n"
732 " for (int i = 0; i < clip_numPlanes && !g_skip; i = i + 6)\n"
734 " vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\n"
735 " in_clippingPlanes[i + 2],\n"
736 " in_clippingPlanes[i + 3]);\n"
737 " vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\n"
738 " in_clippingPlanes[i + 5],\n"
739 " in_clippingPlanes[i + 6]));\n"
740 " for (int j = 0; j < 3; ++j)\n"
742 " if (dot(vec3(planeOrigin - g1ObjDataPos[j].xyz), planeNormal) > 0)\n"
744 " g1[j] = in_clippedVoxelIntensity;\n"
746 " if (dot(vec3(planeOrigin - g2ObjDataPos[j].xyz), planeNormal) > 0)\n"
748 " g2[j] = in_clippedVoxelIntensity;\n"
754 shaderStr += std::string(
" // Apply scale and bias to the fetched values.\n"
755 " g1 = g1 * in_volume_scale[index][c] + in_volume_bias[index][c];\n"
756 " g2 = g2 * in_volume_scale[index][c] + in_volume_bias[index][c];\n"
761 std::string(
" // Central differences: (F_front - F_back) / 2h\n"
762 " // This version of computeGradient() is only used for lighting\n"
763 " // calculations (only direction matters), hence the difference is\n"
764 " // not scaled by 2h and a dummy gradient mag is returned (-1.).\n"
765 " return vec4((g1 - g2) / in_cellSpacing[index], -1.0);\n"
770 shaderStr += std::string(
771 " // Scale values the actual scalar range.\n"
772 " float range = in_scalarsRange[4*index+c][1] - in_scalarsRange[4*index+c][0];\n"
773 " g1 = in_scalarsRange[4*index+c][0] + range * g1;\n"
774 " g2 = in_scalarsRange[4*index+c][0] + range * g2;\n"
776 " // Central differences: (F_front - F_back) / 2h\n"
779 " float avgSpacing = (in_cellSpacing[index].x +\n"
780 " in_cellSpacing[index].y + in_cellSpacing[index].z) / 3.0;\n"
781 " vec3 aspect = in_cellSpacing[index] * 2.0 / avgSpacing;\n"
783 " float grad_mag = length(g2);\n"
785 " // Handle normalizing with grad_mag == 0.0\n"
786 " g2 = grad_mag > 0.0 ? normalize(g2) : vec3(0.0);\n"
788 " // Since the actual range of the gradient magnitude is unknown,\n"
789 " // assume it is in the range [0, 0.25 * dataRange].\n"
790 " range = range != 0 ? range : 1.0;\n"
791 " grad_mag = grad_mag / (0.25 * range);\n"
792 " grad_mag = clamp(grad_mag, 0.0, 1.0);\n"
794 " return vec4(g2.xyz, grad_mag);\n"
800 shaderStr += std::string(
801 "vec4 computeGradient(in vec3 texPos, in int c, in sampler3D volume, in int index)\n"
803 " return vec4(0.0);\n"
816 for(int i=0; i<TOTAL_NUMBER_LIGHTS; i++)
818 g_lightDirectionTex[i] = (g_eyeToTexture * vec4(-in_lightDirection[i], 0.0)).xyz;
822 if (numberPositionalLights > 0)
825 for(int i=0; i<NUMBER_POS_LIGHTS; i++)
827 g_lightPositionTex[i] = (g_eyeToTexture * vec4(in_lightPosition[i], 1.0)).xyz;
837 int independentComponents, std::map<int, std::string> opacityTableMap,
int useGradient)
840 std::string functionBody;
841 bool severalIndpt = noOfComponents > 1 && independentComponents;
842 std::string functionSignature = severalIndpt
843 ?
"vec4 computeRGBAWithGrad(vec4 scalar, vec4 grad, int component)\n"
844 :
"vec4 computeRGBAWithGrad(vec4 scalar, vec4 grad)\n";
853 "vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
854 "for (int i = 0; i < 4; ++i)\n"
856 " yscalar[i] = yscalar[i] * in_transfer2DYAxis_scale[i] + in_transfer2DYAxis_bias[i];\n"
860 for (
int i = 0; i < noOfComponents; ++i)
862 std::string secondAxis(useGradient
868 functionBody +=
" if(component == " + std::to_string(i) +
871 " return texture2D(" +
872 opacityTableMap[i] +
",\n" +
" vec2(scalar[" + std::to_string(i) +
"], " + secondAxis +
877 else if (noOfComponents == 2 && !independentComponents)
879 std::string secondAxis(useGradient ?
"grad.w" :
"yscalar.y");
881 functionBody +=
" return texture2D(" + opacityTableMap[0] +
884 secondAxis +
"));\n";
892 functionBody +=
" return texture2D(" + opacityTableMap[0] +
894 " vec2(scalar.a, grad.w));\n";
900 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
901 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
902 " yscalar = vec4(yscalar.r);\n"
903 " return texture2D(" +
906 " vec2(scalar.a, yscalar.w));\n";
910 resStr = functionSignature +
"{\n" + functionBody +
"}\n";
918 int independentComponents,
int useGradYAxis, std::string position,
bool requestColor =
false)
924 if (inputs.size() > 1)
927 const bool hasGradOp = ::HasGradientOpacity(inputs);
928 resStr +=
" opacity = computeOpacity(vec4(scalar), opacityTF);\n";
933 resStr += std::string(
" gradient = computeGradient(") + position +
", c, volume, index);\n";
934 resStr +=
" opacity *= computeGradientOpacity(gradient, gradTF);\n";
940 vtkGenericWarningMacro(<<
"ComputeOpacityEvaluationCall was called with requestColor, but "
941 "MultiVolume does not support this option yet.");
954 bool indpComps = (noOfComponents > 1 && independentComponents);
955 std::string compArgument = (indpComps) ? std::string(
", c") : std::string();
962 std::string compWeights = indpComps ? std::string(
" * in_componentWeight[c]") :
std::
string();
964 resStr += std::string(
" opacity = computeOpacity(vec4(scalar)") + compArgument +
965 std::string(
")") + compWeights +
";\n";
967 if (hasGradOp || useLabelGradientOpacity)
969 resStr += std::string(
" gradient = computeGradient(") +
position +
970 std::string(
", c, volume, index);\n"
971 " if(gradient.w >= 0.0) {\n") +
972 (hasGradOp ? (std::string(
" opacity *= computeGradientOpacity(gradient") +
973 compArgument +
")" + compWeights +
";\n")
976 + (useLabelGradientOpacity
977 ? (
std::
string(
" opacity *= computeGradientOpacityForLabel(gradient, label);\n"))
986 " color = texture2D(" + inputs[0].RGBTablesMap[0] +
", vec2(scalar, 0.0)).xyz;\n";
995 std::string(
" gradient = computeGradient(") +
position +
", c, volume, index);\n";
997 resStr += std::string(
" vec4 lutRes = computeRGBAWithGrad(vec4(scalar), gradient") +
998 compArgument + std::string(
");\n");
1000 resStr +=
" opacity = lutRes.a;\n";
1004 resStr +=
" color = lutRes.xyz;\n";
1015 int independentComponents,
int useGradYAxis)
1017 const bool hasLighting = ::HasLighting(inputs);
1018 const bool hasGradientOp = ::HasGradientOpacity(inputs);
1020 std::string functionSignature;
1022 if (inputs.size() > 1)
1026 functionSignature = std::string(
1027 "vec4 computeDensityGradient(in vec3 texPos, in int c, in sampler3D volume, "
1028 "const in sampler2D opacityTF, const in sampler2D gradTF, in int index, float label)\n");
1033 std::string(
"vec4 computeDensityGradient(in vec3 texPos, in int c, in sampler3D volume, "
1034 "const in sampler2D opacityTF, in int index, float label)\n");
1039 functionSignature = std::string(
"vec4 computeDensityGradient(in vec3 texPos, in int c, in "
1040 "sampler3D volume, in int index, float label)\n");
1043 std::string shaderStr;
1044 if (hasLighting || hasGradientOp)
1047 std::string opacityTFcall;
1049 static const std::array<std::pair<const char*, const char*>, 6> results_texPos = { {
1050 {
" g1.x",
"texPosPvec[0]" },
1051 {
" g1.y",
"texPosPvec[1]" },
1052 {
" g1.z",
"texPosPvec[2]" },
1053 {
" g2.x",
"texPosNvec[0]" },
1054 {
" g2.y",
"texPosNvec[1]" },
1055 {
" g2.z",
"texPosNvec[2]" },
1058 shaderStr += std::string(
"// c is short for component\n") + functionSignature +
1060 " // Approximate Nabla(F) derivatives with central differences.\n"
1061 " vec3 g1; // F_front\n"
1062 " vec3 g2; // F_back\n"
1063 " vec3 xvec = vec3(in_cellStep[index].x, 0.0, 0.0);\n"
1064 " vec3 yvec = vec3(0.0, in_cellStep[index].y, 0.0);\n"
1065 " vec3 zvec = vec3(0.0, 0.0, in_cellStep[index].z);\n"
1066 " vec3 texPosPvec[3];\n"
1067 " texPosPvec[0] = texPos + xvec;\n"
1068 " texPosPvec[1] = texPos + yvec;\n"
1069 " texPosPvec[2] = texPos + zvec;\n"
1070 " vec3 texPosNvec[3];\n"
1071 " texPosNvec[0] = texPos - xvec;\n"
1072 " texPosNvec[1] = texPos - yvec;\n"
1073 " texPosNvec[2] = texPos - zvec;\n"
1079 for (
auto& gradComp : results_texPos)
1083 mapper, inputs, noOfComponents, independentComponents, useGradYAxis, gradComp.second);
1084 shaderStr += std::string(
" scalar = texture3D(volume,") + gradComp.second +
1085 std::string(
")[c];\n"
1086 " scalar = scalar * in_volume_scale[index][c] + in_volume_bias[index][c];\n") +
1087 opacityTFcall + gradComp.first +
" = opacity;\n";
1093 std::string(
" vec4 g1ObjDataPos[3], g2ObjDataPos[3];\n"
1094 " for (int i = 0; i < 3; ++i)\n"
1096 " g1ObjDataPos[i] = clip_texToObjMat * vec4(texPosPvec[i], 1.0);\n"
1097 " if (g1ObjDataPos[i].w != 0.0)\n"
1099 " g1ObjDataPos[i] /= g1ObjDataPos[i].w;\n"
1101 " g2ObjDataPos[i] = clip_texToObjMat * vec4(texPosNvec[i], 1.0);\n"
1102 " if (g2ObjDataPos[i].w != 0.0)\n"
1104 " g2ObjDataPos[i] /= g2ObjDataPos[i].w;\n"
1108 " for (int i = 0; i < clip_numPlanes && !g_skip; i = i + 6)\n"
1110 " vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\n"
1111 " in_clippingPlanes[i + 2],\n"
1112 " in_clippingPlanes[i + 3]);\n"
1113 " vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\n"
1114 " in_clippingPlanes[i + 5],\n"
1115 " in_clippingPlanes[i + 6]));\n"
1116 " for (int j = 0; j < 3; ++j)\n"
1118 " if (dot(vec3(planeOrigin - g1ObjDataPos[j].xyz), planeNormal) > 0)\n"
1120 " g1[j] = in_clippedVoxelIntensity;\n"
1122 " if (dot(vec3(planeOrigin - g2ObjDataPos[j].xyz), planeNormal) > 0)\n"
1124 " g2[j] = in_clippedVoxelIntensity;\n"
1134 std::string(
" // Central differences: (F_front - F_back) / 2h\n"
1135 " // This version of computeGradient() is only used for lighting\n"
1136 " // calculations (only direction matters), hence the difference is\n"
1137 " // not scaled by 2h and a dummy gradient mag is returned (-1.).\n"
1138 " return vec4((g1 - g2) / in_cellSpacing[index], -1.0);\n"
1143 shaderStr += std::string(
1144 " // Scale values the actual scalar range.\n"
1145 " float range = in_scalarsRange[4*index+c][1] - in_scalarsRange[4*index+c][0];\n"
1146 " g1 = in_scalarsRange[4*index+c][0] + range * g1;\n"
1147 " g2 = in_scalarsRange[4*index+c][0] + range * g2;\n"
1149 " // Central differences: (F_front - F_back) / 2h\n"
1152 " float avgSpacing = (in_cellSpacing[index].x +\n"
1153 " in_cellSpacing[index].y + in_cellSpacing[index].z) / 3.0;\n"
1154 " vec3 aspect = in_cellSpacing[index] * 2.0 / avgSpacing;\n"
1156 " float grad_mag = length(g2);\n"
1158 " // Handle normalizing with grad_mag == 0.0\n"
1159 " g2 = grad_mag > 0.0 ? normalize(g2) : vec3(0.0);\n"
1161 " // Since the actual range of the gradient magnitude is unknown,\n"
1162 " // assume it is in the range [0, 0.25 * dataRange].\n"
1163 " range = range != 0 ? range : 1.0;\n"
1164 " grad_mag = grad_mag / (0.25 * range);\n"
1165 " grad_mag = clamp(grad_mag, 0.0, 1.0);\n"
1167 " return vec4(g2.xyz, grad_mag);\n"
1173 shaderStr += functionSignature +
1175 " return vec4(0.0);\n"
1192float phase_function(float cos_angle)
1201float g_anisotropy2 = in_anisotropy * in_anisotropy;
1203float phase_function(float cos_angle)
1205 float d = 1.0 + g_anisotropy2 - 2.0 * in_anisotropy * cos_angle;
1206 return (1.0 - g_anisotropy2) / (d * sqrt(d));
1216 vtkVolume* vol,
int noOfComponents,
int independentComponents,
int totalNumberOfLights,
1217 int numberPositionalLights,
bool defaultLighting)
1221 std::string shaderStr = std::string(
"\
1222 \nvec4 computeLighting(vec4 color, int component, float label)\
1224 \n vec4 finalColor = vec4(0.0);\n");
1227 int const shadeReqd = volProperty->
GetShade() &&
1234 if (independentComponents)
1236 shaderStr +=
"\n int lightingComponent=component;\n";
1240 shaderStr +=
"\n int lightingComponent=0;\n";
1250 std::string(
" vec4 shading_gradient = computeDensityGradient(g_dataPos, component, "
1251 "in_volume[0], 0, label);\n");
1256 shaderStr += std::string(
1257 " vec4 shading_gradient = computeGradient(g_dataPos, component, in_volume[0], 0);\n");
1268 std::string(
" vec4 gradient = computeGradient(g_dataPos, component, in_volume[0], 0);\n");
1273 shaderStr += std::string(
" vec4 gradient = shading_gradient;\n");
1279 if (defaultLighting)
1282 vec3 diffuse = vec3(0.0);
1283 vec3 specular = vec3(0.0);
1284 vec3 normal = shading_gradient.xyz;
1285 float normalLength = length(normal);
1286 if (normalLength > 0.0)
1288 normal = normalize(normal);
1292 normal = vec3(0.0, 0.0, 0.0);
1294 // XXX: normal is oriented inside the volume, so we take -g_ldir/-g_vdir
1295 float nDotL = dot(normal, -g_ldir[0]);
1296 vec3 r = normalize(2.0 * nDotL * normal + g_ldir[0]);
1297 float vDotR = dot(r, -g_vdir[0]);
1298 if (nDotL < 0.0 && in_twoSidedLighting)
1304 diffuse = nDotL * in_diffuse[lightingComponent] *
1305 in_lightDiffuseColor[0] * color.rgb;
1306 vDotR = max(vDotR, 0.0);
1307 specular = pow(vDotR, in_shininess[lightingComponent]) *
1308 in_specular[lightingComponent] *
1309 in_lightSpecularColor[0];
1311 // For the headlight, ignore the light's ambient color
1312 // for now as it is causing the old mapper tests to fail
1313 finalColor.xyz = in_ambient[lightingComponent] * color.rgb +
1318 else if (totalNumberOfLights > 0)
1321 g_fragWorldPos = g_texToView * vec4(g_dataPos, 1.0);
1322 if (g_fragWorldPos.w != 0.0)
1324 g_fragWorldPos /= g_fragWorldPos.w;
1326 vec3 viewDirection = normalize(-g_fragWorldPos.xyz);
1327 vec3 ambient = vec3(0,0,0);
1328 vec3 diffuse = vec3(0,0,0);
1329 vec3 specular = vec3(0,0,0);
1330 vec3 vertLightDirection;
1331 vec3 normal = normalize((in_textureToEye[0] * vec4(shading_gradient.xyz, 0.0)).xyz);
1335 if (numberPositionalLights > 0)
1338 for (int posNum = 0; posNum < NUMBER_POS_LIGHTS; posNum++)
1340 float attenuation = 1.0;
1341 lightDir = in_lightDirection[posNum];
1342 vertLightDirection = (g_fragWorldPos.xyz - in_lightPosition[posNum]);
1343 float distance = length(vertLightDirection);
1344 vertLightDirection = normalize(vertLightDirection);
1346 (in_lightAttenuation[posNum].x
1347 + in_lightAttenuation[posNum].y * distance
1348 + in_lightAttenuation[posNum].z * distance * distance);
1349 // per OpenGL standard cone angle is 90 or less for a spot light
1350 if (in_lightConeAngle[posNum] <= 90.0)
1352 float coneDot = dot(vertLightDirection, lightDir);
1353 // if inside the cone
1354 if (coneDot >= cos(radians(in_lightConeAngle[posNum])))
1356 attenuation = attenuation * pow(coneDot, in_lightExponent[posNum]);
1364 float nDotL = dot(normal, vertLightDirection);
1365 if (nDotL < 0.0 && in_twoSidedLighting)
1371 float df = max(0.0, attenuation * nDotL);
1372 diffuse += (df * in_lightDiffuseColor[posNum]);
1373 vec3 r = normalize(2.0 * nDotL * normal - vertLightDirection);
1374 float rDotV = dot(-viewDirection, r);
1375 if (rDotV < 0.0 && in_twoSidedLighting)
1381 float sf = attenuation * pow(rDotV, in_shininess[lightingComponent]);
1382 specular += (sf * in_lightSpecularColor[posNum]);
1385 ambient += in_lightAmbientColor[posNum];
1391 for (int dirNum = NUMBER_POS_LIGHTS; dirNum < TOTAL_NUMBER_LIGHTS; dirNum++)
1393 vertLightDirection = in_lightDirection[dirNum];
1394 float nDotL = dot(normal, vertLightDirection);
1395 if (nDotL < 0.0 && in_twoSidedLighting)
1401 float df = max(0.0, nDotL);
1402 diffuse += (df * in_lightDiffuseColor[dirNum]);
1403 vec3 r = normalize(2.0 * nDotL * normal - vertLightDirection);
1404 float rDotV = dot(-viewDirection, r);
1407 float sf = pow(rDotV, in_shininess[lightingComponent]);
1408 specular += (sf * in_lightSpecularColor[dirNum]);
1411 ambient += in_lightAmbientColor[dirNum];
1413 finalColor.xyz = in_ambient[lightingComponent] * ambient +
1414 in_diffuse[lightingComponent] * diffuse * color.rgb +
1415 in_specular[lightingComponent] * specular;
1422 shaderStr += std::string(
"\n finalColor = vec4(color.rgb, 0.0);");
1429 std::string blendingFormula = std::string(
" float vol_coef = ") +
1430 (vsBlend < 1.0 ?
"2.0 * in_volumetricScatteringBlending * exp( - 2.0 * "
1431 "in_volumetricScatteringBlending * shading_gradient.w * color.a)"
1432 :
"2.0 * (1.0 - in_volumetricScatteringBlending) * exp( - 2.0 * "
1433 "in_volumetricScatteringBlending * shading_gradient.w * color.a) + 2.0 * "
1434 "in_volumetricScatteringBlending - 1.0") +
1441 "vec3 view_tdir = normalize((g_eyeToTexture * vec4(viewDirection, 0.0)).xyz);\n")) +
1443 vec3 secondary_contrib = vec3(0.0);
1444 vec3 tex_light = vec3(0.0);
1445 shading_gradient.w = length(shading_gradient.xyz);
1446 vec3 diffuse_light = vec3(0.0);
1447 float attenuation = 0.0;
1448 float vol_shadow = 0.0;
1452 if (defaultLighting)
1455 tex_light = (in_inverseTextureDatasetMatrix[0] * vec4(in_eyePosObjs[0], 1.0)).xyz;
1456 phase = phase_function(-1); // always angle of pi
1457 vol_shadow = volumeShadow(g_dataPos, tex_light, 1.0, component, in_volume[0], 0, label);
1458 secondary_contrib += vol_shadow * phase * color.rgb * in_diffuse[lightingComponent] * in_lightDiffuseColor[0];
1459 secondary_contrib += in_ambient[lightingComponent] * in_lightAmbientColor[0];
1464 if (numberPositionalLights > 0)
1467 float dist_light = 0.0;
1468 for(int posNum = 0; posNum < NUMBER_POS_LIGHTS; posNum++)
1470 tex_light = g_lightPositionTex[posNum];
1471 vec3 light_vert = g_fragWorldPos.xyz - in_lightPosition[posNum];
1472 dist_light = length(light_vert);
1473 float light_angle = dot(normalize(light_vert), normalize(in_lightDirection[posNum]));
1474 phase = phase_function(dot(normalize(g_dataPos - tex_light), view_tdir));
1476 (in_lightAttenuation[posNum].x
1477 + in_lightAttenuation[posNum].y * dist_light
1478 + in_lightAttenuation[posNum].z * dist_light * dist_light);
1479 attenuation *= max(0.0, sign(light_angle - cos(radians(in_lightConeAngle[posNum]))))
1480 * pow(light_angle, in_lightExponent[posNum]);
1481 vol_shadow = volumeShadow(g_dataPos, tex_light, 1.0, component, in_volume[0], 0, label);
1482 secondary_contrib += vol_shadow * phase * attenuation * color.rgb * in_diffuse[lightingComponent] * in_lightDiffuseColor[posNum];
1483 secondary_contrib += in_ambient[lightingComponent] * in_lightAmbientColor[posNum];
1489 for(int dirNum = NUMBER_POS_LIGHTS; dirNum < TOTAL_NUMBER_LIGHTS; dirNum++)
1491 tex_light = g_lightDirectionTex[dirNum];
1492 phase = phase_function(dot(normalize(-tex_light), view_tdir));
1493 vol_shadow = volumeShadow(g_dataPos, tex_light, 0.0, component, in_volume[0], 0, label);
1494 secondary_contrib += vol_shadow * phase * color.rgb * in_diffuse[lightingComponent] * in_lightDiffuseColor[dirNum];
1495 secondary_contrib += in_ambient[lightingComponent] * in_lightAmbientColor[dirNum];
1500 shaderStr += blendingFormula +
1502 finalColor.xyz = (1.0 - vol_coef) * finalColor.xyz + vol_coef * secondary_contrib;
1512 if (noOfComponents == 1 || !independentComponents)
1516 shaderStr += std::string(
"\
1517 \n if (gradient.w >= 0.0 && label == 0.0)\
1519 \n color.a *= computeGradientOpacity(gradient);\
1524 shaderStr += std::string(
"\
1525 \n if (gradient.w >= 0.0 && label > 0.0)\
1527 \n color.a *= computeGradientOpacityForLabel(gradient, label);\
1531 else if (noOfComponents > 1 && independentComponents && volProperty->
HasGradientOpacity())
1533 shaderStr += std::string(
"\
1534 \n if (gradient.w >= 0.0)\
1536 \n for (int i = 0; i < in_noOfComponents; ++i)\
1538 \n color.a = color.a *\
1539 \n computeGradientOpacity(gradient, i) * in_componentWeight[i];\
1545 shaderStr += std::string(
"\
1546 \n finalColor.a = color.a;\
1547 \n //VTK::ComputeLighting::Exit\
1548 \n return finalColor;\
1557 int vtkNotUsed(totalNumberOfLights),
bool defaultLighting)
1561 std::string shaderStr = std::string();
1566 shaderStr += std::string(
"\
1567 \nvec4 computeLighting(vec3 texPos, vec4 color, const in sampler2D gradientTF, const in sampler3D volume, const in sampler2D opacityTF, const int volIdx, int component)\
1569 \n vec4 finalColor = vec4(0.0);\n");
1573 shaderStr += std::string(
"\
1574 \nvec4 computeLighting(vec3 texPos, vec4 color, const in sampler3D volume, const in sampler2D opacityTF, const int volIdx, int component)\
1576 \n vec4 finalColor = vec4(0.0);\n");
1579 if (independentComponents)
1581 shaderStr +=
"\n int lightingComponent=component;\n";
1585 shaderStr +=
"\n int lightingComponent=0;\n";
1589 int const shadeReqd = volProperty->
GetShade() &&
1607 shaderStr +=
" vec4 shading_gradient = computeDensityGradient(texPos, component, volume, "
1608 "opacityTF, gradientTF, volIdx, 0.0);\n";
1612 shaderStr +=
" vec4 shading_gradient = computeDensityGradient(texPos, component, volume, "
1613 "opacityTF, volIdx, 0.0);\n";
1619 " vec4 shading_gradient = computeGradient(texPos, component, volume, volIdx);\n";
1628 shaderStr +=
" vec4 gradient = computeGradient(texPos, component, volume, volIdx);\n";
1633 shaderStr +=
" vec4 gradient = shading_gradient;\n";
1637 if (shadeReqd && defaultLighting)
1639 shaderStr += std::string(
"\
1640 \n vec3 diffuse = vec3(0.0);\
1641 \n vec3 specular = vec3(0.0);\
1642 \n vec3 normal = shading_gradient.xyz;\
1643 \n float normalLength = length(normal);\
1644 \n if (normalLength > 0.0)\
1646 \n normal = normalize(normal);\
1650 \n normal = vec3(0.0, 0.0, 0.0);\
1652 \n // normal is oriented inside the volume (because normal = gradient, oriented inside the volume)\
1653 \n // thus we have to take minus everything\
1654 \n float nDotL = dot(normal, -g_ldir[volIdx]);\
1655 \n vec3 r = normalize(2.0 * nDotL * normal + g_ldir[volIdx]);\
1656 \n float vDotR = dot(r, -g_vdir[volIdx]);\
1657 \n if (nDotL < 0.0 && in_twoSidedLighting)\
1661 \n if (nDotL > 0.0)\
1663 \n diffuse = nDotL * in_diffuse[lightingComponent] *\
1664 \n in_lightDiffuseColor[0] * color.rgb;\
1665 \n vDotR = max(vDotR, 0.0);\
1666 \n specular = pow(vDotR, in_shininess[lightingComponent]) *\
1667 \n in_specular[lightingComponent] *\
1668 \n in_lightSpecularColor[0];\
1670 \n // For the headlight, ignore the light's ambient color\
1671 \n // for now as it is causing the old mapper tests to fail\
1672 \n finalColor.xyz = in_ambient[lightingComponent] * color.rgb +\
1673 \n diffuse + specular;\
1678 shaderStr += std::string(
"\n finalColor = vec4(color.rgb, 0.0);");
1685 if (volProperty->
HasGradientOpacity() && (noOfComponents == 1 || !independentComponents))
1687 shaderStr += std::string(
"\
1688 \n if (gradient.w >= 0.0)\
1690 \n color.a = color.a *\
1691 \n computeGradientOpacity(gradient, gradientTF);\
1696 shaderStr += std::string(
"\
1697 \n finalColor.a = color.a;\
1698 \n //VTK::ComputeLighting::Exit\
1699 \n return clamp(finalColor, 0.0, 1.0);\
1711 return std::string(
"\
1712 \nvec3 computeRayDirection()\
1714 \n return normalize(ip_vertexPos.xyz - in_eyePosObjs[0].xyz);\
1719 return std::string(
"\
1720 \nuniform vec3 in_projectionDirection;\
1721 \nvec3 computeRayDirection()\
1723 \n return normalize((in_inverseVolumeMatrix[0] *\
1724 \n vec4(in_projectionDirection, 0.0)).xyz);\
1734 if (inputs.size() > 1)
1737 for (
auto& item : inputs)
1739 const auto& prop = item.second.Volume->GetProperty();
1743 auto& map = item.second.RGBTablesMap;
1744 const auto numComp = map.size();
1746 "uniform sampler2D " + ArrayBaseName(map[0]) +
"[" + std::to_string(numComp) +
"];\n";
1754 resStr +=
"uniform sampler2D " + ArrayBaseName(inputs[0].RGBTablesMap[0]) +
"[" +
1755 std::to_string(noOfComponents) +
"];\n";
1765 int independentComponents, std::map<int, std::string> colorTableMap)
1767 std::ostringstream ss;
1769 std::string shaderStr = ss.str();
1770 if (noOfComponents == 1)
1772 shaderStr += std::string(
"\
1773 \nvec4 computeColor(vec4 scalar, float opacity)\
1775 \n return clamp(computeLighting(vec4(texture2D(" +
1776 colorTableMap[0] +
",\
1777 \n vec2(scalar.w, 0.0)).xyz, opacity), 0, 0.0), 0.0, 1.0);\
1781 else if (noOfComponents > 1 && independentComponents)
1783 std::ostringstream toString;
1785 shaderStr += std::string(
"\
1786 \nvec4 computeColor(vec4 scalar, float opacity, int component)\
1789 for (
int i = 0; i < noOfComponents; ++i)
1792 shaderStr += std::string(
"\
1793 \n if (component == " +
1794 toString.str() +
")");
1796 shaderStr += std::string(
"\
1798 \n return clamp(computeLighting(vec4(texture2D(\
1801 shaderStr += std::string(
", vec2(\
1803 toString.str() +
"],0.0)).xyz,\
1805 toString.str() +
", 0.0), 0.0, 1.0);\
1813 shaderStr += std::string(
"\n }");
1816 else if (noOfComponents == 2 && !independentComponents)
1818 shaderStr += std::string(
"\
1819 \nvec4 computeColor(vec4 scalar, float opacity)\
1821 \n return clamp(computeLighting(vec4(texture2D(" +
1822 colorTableMap[0] +
",\
1823 \n vec2(scalar.x, 0.0)).xyz,\
1824 \n opacity), 0, 0.0), 0.0, 1.0);\
1828 else if (noOfComponents == 4 && !independentComponents)
1830 shaderStr += std::string(
"\
1831 \nvec4 computeColor(vec4 scalar, float opacity)\
1833 \n return clamp(computeLighting(vec4(scalar.xyz, opacity), 3, 0.0), 0.0, 1.0);\
1839 shaderStr += std::string(
"\
1840 \nvec4 computeColor(vec4 scalar, float opacity)\
1842 \n return clamp(computeLighting(vec4(scalar.xyz, opacity), 0, 0.0), 0.0, 1.0);\
1852 std::ostringstream ss;
1854 std::map<int, std::string> lastColorTableMap;
1855 for (
auto& item : inputs)
1857 auto prop = item.second.Volume->GetProperty();
1860 auto& map = item.second.RGBTablesMap;
1861 lastComponentMode = item.second.ComponentMode;
1862 lastColorTableMap = map;
1867 ss <<
"vec4 computeColor(vec4 scalar, const in sampler2D colorTF)\
1869 \n return clamp(computeLighting(vec4(texture2D(colorTF,\
1870 \n vec2(scalar.w, 0.0)).xyz, opacity), 0), 0.0, 1.0);\
1875 std::ostringstream colorDec;
1876 colorDec <<
" vec3 color = ";
1880 colorDec <<
"scalar.xyz;\n";
1887 colorDec <<
"texture2D(colorTF, vec2(scalar.w, 0.0)).xyz;\n";
1893 <<
"vec4 computeColor(vec3 texPos, vec4 scalar, float opacity, const in sampler2D colorTF, "
1894 "const in sampler2D gradientTF, const in sampler3D volume, const in sampler2D "
1895 "opacityTF, const int volIdx)\n\n"
1897 ss << colorDec.str()
1898 <<
" return clamp(computeLighting(texPos, vec4(color, opacity), gradientTF, volume, "
1900 "volIdx, 0), 0.0, 1.0);\n"
1906 <<
"vec4 computeColor(vec3 texPos, vec4 scalar, float opacity, const in sampler2D colorTF, "
1907 "const in sampler3D volume, const in sampler2D opacityTF, const int volIdx)\n\n"
1909 ss << colorDec.str()
1910 <<
" return clamp(computeLighting(texPos, vec4(color, opacity), volume, opacityTF,"
1911 "volIdx, 0), 0.0, 1.0);\n"
1923 std::ostringstream ss;
1924 for (
auto& item : inputs)
1926 auto prop = item.second.Volume->GetProperty();
1930 auto& map = item.second.OpacityTablesMap;
1931 const auto numComp = map.size();
1932 ss <<
"uniform sampler2D " << ArrayBaseName(map[0]) <<
"[" << numComp <<
"];\n";
1935 ss <<
"float computeOpacity(vec4 scalar, const in sampler2D opacityTF)\n"
1937 " return texture2D(opacityTF, vec2(scalar.w, 0)).r;\n"
1946 std::ostringstream ss;
1948 for (
auto& item : inputs)
1950 auto prop = item.second.Volume->GetProperty();
1954 auto& map = item.second.GradientOpacityTablesMap;
1955 const auto numComp = map.size();
1956 ss <<
"uniform sampler2D " << ArrayBaseName(map[0]) <<
"[" << numComp <<
"];\n";
1959 ss <<
"float computeGradientOpacity(vec4 grad, const in sampler2D gradientTF)\n"
1961 " return texture2D(gradientTF, vec2(grad.w, 0.0)).r;\n"
1969 int independentComponents, std::map<int, std::string> opacityTableMap)
1971 std::ostringstream ss;
1972 ss <<
"uniform sampler2D " << ArrayBaseName(opacityTableMap[0]) <<
"[" << noOfComponents
1975 std::string shaderStr = ss.str();
1976 if (noOfComponents > 1 && independentComponents)
1978 shaderStr += std::string(
"\
1979 \nfloat computeOpacity(vec4 scalar, int component)\
1982 for (
int i = 0; i < noOfComponents; ++i)
1984 std::ostringstream toString;
1986 shaderStr += std::string(
"\
1987 \n if (component == " +
1988 toString.str() +
")");
1990 shaderStr += std::string(
"\
1992 \n return texture2D(" +
1993 opacityTableMap[i]);
1995 shaderStr += std::string(
",vec2(scalar[" + toString.str() +
"], 0)).r;\
1999 shaderStr += std::string(
"\n}");
2002 else if (noOfComponents == 2 && !independentComponents)
2004 shaderStr += std::string(
"\
2005 \nfloat computeOpacity(vec4 scalar)\
2007 \n return texture2D(" +
2008 opacityTableMap[0] +
", vec2(scalar.y, 0)).r;\
2014 shaderStr += std::string(
"\
2015 \nfloat computeOpacity(vec4 scalar)\
2017 \n return texture2D(" +
2018 opacityTableMap[0] +
", vec2(scalar.w, 0)).r;\
2026 int vtkNotUsed(independentComponents), std::map<int, std::string> colorTableMap)
2028 if (noOfComponents == 1)
2032 "vec4 computeColor(vec4 scalar, float opacity)\n"
2034 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2035 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
2036 " yscalar = vec4(yscalar.r);\n"
2037 " vec4 color = texture2D(" +
2040 " vec2(scalar.w, yscalar.w));\n"
2041 " return computeLighting(color, 0, 0);\n"
2044 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2046 " return vec4(0, 0, 0, 0)\n"
2053 int independentComponents, std::map<int, std::string> colorTableMap,
int useGradient)
2059 if (noOfComponents == 1)
2062 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2064 " vec4 color = texture2D(" +
2067 " vec2(scalar.w, g_gradients_0[0].w));\n"
2068 " return computeLighting(color, 0, 0);\n"
2071 else if (noOfComponents > 1 && independentComponents)
2074 std::string shaderStr;
2075 shaderStr += std::string(
"vec4 computeColor(vec4 scalar, float opacity, int component)\n"
2078 for (
int i = 0; i < noOfComponents; ++i)
2080 std::ostringstream toString;
2082 std::string
const num = toString.str();
2083 shaderStr += std::string(
" if (component == " + num +
2086 " vec4 color = texture2D(" +
2090 num +
"], g_gradients_0[" + num +
2092 " return computeLighting(color, " +
2097 shaderStr += std::string(
"}\n");
2101 else if (noOfComponents == 2 && !independentComponents)
2104 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2106 " vec4 color = texture2D(" +
2109 " vec2(scalar.x, g_gradients_0[0].w));\n"
2110 " return computeLighting(color, 0, 0.0);\n"
2115 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2117 " return computeLighting(vec4(scalar.xyz, opacity), 0, 0.0);\n"
2125 std::ostringstream ss;
2126 for (
auto& item : inputs)
2128 auto prop = item.second.Volume->GetProperty();
2132 auto& map = item.second.TransferFunctions2DMap;
2133 const auto numComp = map.size();
2134 ss <<
"uniform sampler2D " << ArrayBaseName(map[0]) <<
"[" << numComp <<
"];\n";
2137 std::string result = ss.str() +
2138 std::string(
"uniform sampler3D in_transfer2DYAxis;\n"
2139 "uniform vec4 in_transfer2DYAxis_scale;\n"
2140 "uniform vec4 in_transfer2DYAxis_bias;\n");
2148 int independentComponents, std::map<int, std::string> opacityTableMap,
int useGradient)
2150 std::ostringstream toString;
2151 if (noOfComponents > 1 && independentComponents)
2154 toString <<
"float computeOpacity(vec4 scalar, int component)\n"
2159 <<
"vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2160 "for (int i = 0; i < 4; ++i)\n"
2162 " yscalar[i] = yscalar[i] * in_transfer2DYAxis_scale[i] + in_transfer2DYAxis_bias[i];\n"
2164 if (noOfComponents == 1)
2166 toString <<
"yscalar = vec4(yscalar.r);\n";
2170 for (
int i = 0; i < noOfComponents; ++i)
2174 toString <<
" if (component == " << i
2177 " return texture2D("
2178 << opacityTableMap[i]
2181 << i <<
"], g_gradients_0[" << i
2187 toString <<
" if (component == " << i
2190 " return texture2D("
2191 << opacityTableMap[i]
2194 << i <<
"], yscalar[" << i
2203 else if (noOfComponents == 2 && !independentComponents)
2208 toString <<
"float computeOpacity(vec4 scalar)\n"
2210 " return texture2D(" +
2211 opacityTableMap[0] +
2213 " vec2(scalar.y, g_gradients_0[0].w)).a;\n"
2219 toString <<
"float computeOpacity(vec4 scalar)\n"
2221 " return texture2D(" +
2222 opacityTableMap[0] +
2224 " vec2(scalar.y, yscalar.y)).a;\n"
2234 toString <<
"float computeOpacity(vec4 scalar)\n"
2236 " return texture2D(" +
2237 opacityTableMap[0] +
2239 " vec2(scalar.a, g_gradients_0[0].w)).a;\n"
2246 <<
"float computeOpacity(vec4 scalar)\n"
2248 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2249 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
2250 " yscalar = vec4(yscalar.r);\n"
2251 " return texture2D(" +
2252 opacityTableMap[0] +
2254 " vec2(scalar.a, yscalar.w)).a;\n"
2258 return toString.str();
2263 vtkVolume* vtkNotUsed(vol),
int noOfComponents,
int independentComponents,
2267 std::string declarations;
2268 std::string functionSignature;
2269 std::string opacityEval;
2270 std::string rayInit;
2272 const size_t numInputs = inputs.size();
2273 const bool hasGradOp = ::HasGradientOpacity(inputs);
2278 functionSignature =
"float volumeShadow(vec3 sample_position, vec3 light_pos_dir, float is_Pos, "
2279 " in int c, in sampler3D volume, " +
2280 (numInputs > 1 ? std::string(
"in sampler2D opacityTF, ") : std::string()) +
2281 (numInputs > 1 && hasGradOp ? std::string(
"in sampler2D gradTF, ") : std::string()) +
2282 "int index, float label)\n";
2287 vec3 direction = vec3(0.0);
2288 vec3 norm_dir = vec3(0.0);
2289 float maxdist = 0.0;
2292 float opacity = 0.0;
2296 float sampled_dist = 0.0;
2297 vec3 sampled_point = vec3(0.0);
2302 // direction is light_pos_dir when light is directional
2303 // and light_pos_dir - sample_position when positional
2304 direction = light_pos_dir - is_Pos * sample_position;
2305 norm_dir = normalize(direction);
2306 // introduce little offset to avoid sampling shadows at the exact
2308 sample_position += g_lengthStep * norm_dir;
2309 direction = light_pos_dir - is_Pos * sample_position;
2310 ray.origin = sample_position;
2313 ray.invDir = 1.0/ray.dir;
2314 if(!BBoxIntersect(vec3(0.0), vec3(1.0), ray, hit))
2316 // it can happen around the bounding box
2319 if(hit.tmax < g_lengthStep)
2321 // if we're too close to the bounding box
2324 // in case of directional light, we want direction not to be normalized but to go
2325 // all the way to the bbox
2326 direction *= pow(hit.tmax / length(direction), 1.0 - is_Pos);
2327 maxdist = min(hit.tmax, length(direction));
2328 maxdist = min(in_giReach, maxdist);
2329 if(maxdist < EPSILON) return 1.0;
2335 opacityEval +=
" scalar = texture3D(volume, sampled_point)[c];\n"
2336 " scalar = scalar * in_volume_scale[index][c] + in_volume_bias[index][c];\n";
2338 mapper, inputs, noOfComponents, independentComponents, useGradYAxis,
"sampled_point",
true);
2340 resStr += functionSignature +
"{\n" + declarations + rayInit +
2342 float current_dist = 0.0;
2343 float current_step = g_lengthStep;
2344 float clamped_step = 0.0;
2345 while(current_dist < maxdist)
2347 clamped_step = min(maxdist - current_dist, current_step);
2348 sampled_dist = current_dist + clamped_step * g_jitterValue;
2349 sampled_point = sample_position + sampled_dist * norm_dir;
2353 shadow *= 1.0 - opacity;
2354 current_dist += current_step;
2367 return std::string();
2376 return std::string(
"\
2377 \n bool l_firstValue;\
2378 \n vec4 l_maxValue;");
2382 return std::string(
"\
2383 \n bool l_firstValue;\
2384 \n vec4 l_minValue;");
2388 return std::string(
"\
2389 \n uvec4 l_numSamples;\
2390 \n vec4 l_avgValue;");
2394 return std::string(
"\
2395 \n vec4 l_sumValue;");
2399 return std::string(
"\
2400 \n int l_initialIndex = 0;\
2401 \n float l_normValues[NUMBER_OF_CONTOURS + 2];");
2405 return std::string();
2415 return std::string(
"\
2416 \n // We get data between 0.0 - 1.0 range\
2417 \n l_firstValue = true;\
2418 \n l_maxValue = vec4(0.0);");
2422 return std::string(
"\
2423 \n //We get data between 0.0 - 1.0 range\
2424 \n l_firstValue = true;\
2425 \n l_minValue = vec4(1.0);");
2429 return std::string(
"\
2430 \n //We get data between 0.0 - 1.0 range\
2431 \n l_avgValue = vec4(0.0);\
2432 \n // Keep track of number of samples\
2433 \n l_numSamples = uvec4(0);");
2437 return std::string(
"\
2438 \n //We get data between 0.0 - 1.0 range\
2439 \n l_sumValue = vec4(0.0);");
2443 return std::string(
"\
2444 \n#if NUMBER_OF_CONTOURS\
2445 \n l_normValues[0] = -1e20; //-infinity\
2446 \n l_normValues[NUMBER_OF_CONTOURS+1] = +1e20; //+infinity\
2447 \n for (int i = 0; i < NUMBER_OF_CONTOURS; i++)\
2449 \n l_normValues[i+1] = (in_isosurfacesValues[i] - in_scalarsRange[0].x) / \
2450 \n (in_scalarsRange[0].y - in_scalarsRange[0].x);\
2457 return std::string();
2465 const int numInputs =
static_cast<int>(inputs.size());
2466 const int comp = numInputs == 1 ?
2468 (!independentComponents ? 1 : numInputs)
2473 std::ostringstream toShader;
2474 for (
const auto& item : inputs)
2476 auto& input = item.second;
2477 if (input.Volume->GetProperty()->HasGradientOpacity())
2479 toShader <<
"vec4 " << input.GradientCacheName <<
"[" << comp <<
"];\n";
2483 return toShader.str();
2488 int noOfComponents = 1,
int independentComponents = 0)
2490 std::ostringstream shader;
2491 if (independentComponents)
2493 if (noOfComponents == 1)
2495 shader <<
"g_gradients_0[0] = computeGradient(g_dataPos, 0, in_volume[0], 0);\n";
2500 shader <<
"for (int comp = 0; comp < in_noOfComponents; comp++)\n"
2502 " g_gradients_0[comp] = computeGradient(g_dataPos, comp, in_volume[0], 0);\n"
2508 shader <<
"g_gradients_0[0] = computeGradient(g_dataPos, 0, in_volume[0], 0);\n";
2511 return shader.str();
2518 std::ostringstream toShaderStr;
2519 toShaderStr <<
" if (!g_skip)\n"
2529 for (
auto& item : inputs)
2531 auto& input = item.second;
2532 auto property = input.Volume->GetProperty();
2534 const auto idx = i + 1;
2539 " texPos = (in_cellToPoint[" << idx <<
"] * in_inverseTextureDatasetMatrix[" << idx
2540 <<
"] * in_inverseVolumeMatrix[" << idx
2542 " in_volumeMatrix[0] * in_textureDatasetMatrix[0] * "
2543 "vec4(g_dataPos.xyz, 1.0)).xyz;\n"
2544 " if ((all(lessThanEqual(texPos, vec3(1.0))) &&\n"
2545 " all(greaterThanEqual(texPos, vec3(0.0)))))\n"
2547 " vec4 scalar = texture3D(in_volume["
2550 " scalar = scalar * in_volume_scale["
2551 << i <<
"] + in_volume_bias[" << i <<
"];\n";
2554 if (property->GetIndependentComponents())
2556 toShaderStr <<
" scalar = vec4(scalar.r);\n";
2559 toShaderStr <<
" g_srcColor = vec4(0.0);\n";
2563 std::string gradientopacity_param = (
property->HasGradientOpacity())
2564 ? input.GradientOpacityTablesMap[0] + std::string(
", ")
2567 toShaderStr <<
" g_srcColor.a = computeOpacity(scalar,"
2568 << input.OpacityTablesMap[0]
2570 " if (g_srcColor.a > 0.0)\n"
2572 " g_srcColor = computeColor(texPos, scalar, g_srcColor.a, "
2573 << input.RGBTablesMap[0] <<
", " << gradientopacity_param <<
"in_volume[" << i
2574 <<
"], " << input.OpacityTablesMap[0] <<
", " << i <<
");\n";
2576 if (property->HasGradientOpacity())
2578 const auto& grad = input.GradientCacheName;
2579 toShaderStr <<
" " << grad <<
"[0] = computeGradient(texPos, 0, "
2580 <<
"in_volume[" << i <<
"], " << i
2584 <<
"[0].w >= 0.0)\n"
2586 " g_srcColor.a *= computeGradientOpacity("
2587 << grad <<
"[0], " << input.GradientOpacityTablesMap[0]
2594 const auto& grad = input.GradientCacheName;
2597 " " << grad <<
"[0] = computeGradient(texPos, 0, "
2598 <<
"in_volume[" << i <<
"], " << i
2600 " g_srcColor = texture2D("
2601 << input.TransferFunctions2DMap[0] <<
", vec2(scalar.r, "
2602 << input.GradientCacheName
2604 " if (g_srcColor.a > 0.0)\n"
2609 <<
" g_srcColor.rgb *= g_srcColor.a;\n"
2610 " g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;\n"
2619 toShaderStr <<
" }\n";
2621 return toShaderStr.str();
2627 int noOfComponents,
int independentComponents = 0)
2631 std::string shaderStr;
2633 shaderStr += std::string(
"\
2640 shaderStr += std::string(
"\
2641 \n // Compute IJK vertex position for current sample in the rectilinear grid\
2642 \n vec4 dataPosWorld = in_volumeMatrix[0] * in_textureDatasetMatrix[0] * vec4(g_dataPos, 1.0);\
2643 \n dataPosWorld = dataPosWorld / dataPosWorld.w;\
2644 \n dataPosWorld.w = 1.0;\
2645 \n ivec3 ijk = ivec3(0);\
2646 \n vec3 ijkTexCoord = vec3(0.0);\
2647 \n vec3 pCoords = vec3(0.0);\
2648 \n vec3 xPrev, xNext, tmp;\
2649 \n int sz = textureSize(in_coordTexs, 0);\
2650 \n vec4 dataPosWorldScaled = dataPosWorld * vec4(in_coordsScale, 1.0) +\
2651 \n vec4(in_coordsBias, 1.0);\
2652 \n for (int j = 0; j < 3; ++j)\
2654 \n xPrev = texture1D(in_coordTexs, 0.0).xyz;\
2655 \n xNext = texture1D(in_coordTexs, (in_coordTexSizes[j] - 1) / sz).xyz;\
2656 \n if (xNext[j] < xPrev[j])\
2662 \n for (int i = 0; i < int(in_coordTexSizes[j]); i++)\
2664 \n xNext = texture1D(in_coordTexs, (i + 0.5) / sz).xyz;\
2665 \n if (dataPosWorldScaled[j] >= xPrev[j] && dataPosWorldScaled[j] < xNext[j])\
2668 \n pCoords[j] = (dataPosWorldScaled[j] - xPrev[j]) / (xNext[j] - xPrev[j]);\
2671 \n else if (dataPosWorldScaled[j] == xNext[j])\
2674 \n pCoords[j] = 1.0;\
2679 \n ijkTexCoord[j] = (ijk[j] + pCoords[j]) / in_coordTexSizes[j];\
2681 \n scalar = texture3D(in_volume[0], sign(in_cellSpacing[0]) * ijkTexCoord);\
2686 shaderStr += std::string(
"\
2687 \n scalar = texture3D(in_volume[0], g_dataPos);\
2692 if (noOfComponents == 1)
2694 shaderStr += std::string(
"\
2695 \n scalar.r = scalar.r * in_volume_scale[0].r + in_volume_bias[0].r;\
2696 \n scalar = vec4(scalar.r);");
2701 shaderStr += std::string(
"\
2702 \n scalar = scalar * in_volume_scale[0] + in_volume_bias[0];");
2707 if (noOfComponents > 1)
2709 if (!independentComponents)
2711 shaderStr += std::string(
"\
2712 \n if (l_maxValue.w < scalar.w || l_firstValue)\
2714 \n l_maxValue = scalar;\
2717 \n if (l_firstValue)\
2719 \n l_firstValue = false;\
2724 shaderStr += std::string(
"\
2725 \n for (int i = 0; i < in_noOfComponents; ++i)\
2727 \n if (l_maxValue[i] < scalar[i] || l_firstValue)\
2729 \n l_maxValue[i] = scalar[i];\
2732 \n if (l_firstValue)\
2734 \n l_firstValue = false;\
2740 shaderStr += std::string(
"\
2741 \n if (l_maxValue.w < scalar.x || l_firstValue)\
2743 \n l_maxValue.w = scalar.x;\
2746 \n if (l_firstValue)\
2748 \n l_firstValue = false;\
2754 if (noOfComponents > 1)
2756 if (!independentComponents)
2758 shaderStr += std::string(
"\
2759 \n if (l_minValue.w > scalar.w || l_firstValue)\
2761 \n l_minValue = scalar;\
2764 \n if (l_firstValue)\
2766 \n l_firstValue = false;\
2771 shaderStr += std::string(
"\
2772 \n for (int i = 0; i < in_noOfComponents; ++i)\
2774 \n if (l_minValue[i] < scalar[i] || l_firstValue)\
2776 \n l_minValue[i] = scalar[i];\
2779 \n if (l_firstValue)\
2781 \n l_firstValue = false;\
2787 shaderStr += std::string(
"\
2788 \n if (l_minValue.w > scalar.x || l_firstValue)\
2790 \n l_minValue.w = scalar.x;\
2793 \n if (l_firstValue)\
2795 \n l_firstValue = false;\
2801 if (noOfComponents > 1 && independentComponents)
2803 shaderStr += std::string(
"\
2804 \n for (int i = 0; i < in_noOfComponents; ++i)\
2806 \n // Get the intensity in volume scalar range\
2807 \n float intensity = in_scalarsRange[i][0] +\
2808 \n (in_scalarsRange[i][1] -\
2809 \n in_scalarsRange[i][0]) * scalar[i];\
2810 \n if (in_averageIPRange.x <= intensity &&\
2811 \n intensity <= in_averageIPRange.y)\
2813 \n l_avgValue[i] += computeOpacity(scalar, i) * scalar[i];\
2814 \n ++l_numSamples[i];\
2820 shaderStr += std::string(
"\
2821 \n // Get the intensity in volume scalar range\
2822 \n float intensity = in_scalarsRange[0][0] +\
2823 \n (in_scalarsRange[0][1] -\
2824 \n in_scalarsRange[0][0]) * scalar.x;\
2825 \n if (in_averageIPRange.x <= intensity &&\
2826 \n intensity <= in_averageIPRange.y)\
2828 \n l_avgValue.x += computeOpacity(scalar) * scalar.x;\
2829 \n ++l_numSamples.x;\
2835 if (noOfComponents > 1 && independentComponents)
2837 shaderStr += std::string(
"\
2838 \n for (int i = 0; i < in_noOfComponents; ++i)\
2840 \n float opacity = computeOpacity(scalar, i);\
2841 \n l_sumValue[i] = l_sumValue[i] + opacity * scalar[i];\
2846 shaderStr += std::string(
"\
2847 \n float opacity = computeOpacity(scalar);\
2848 \n l_sumValue.x = l_sumValue.x + opacity * scalar.x;");
2853 shaderStr += std::string(
"\
2854 \n#if NUMBER_OF_CONTOURS\
2855 \n int maxComp = 0;");
2857 std::string compParamStr;
2858 if (noOfComponents > 1 && independentComponents)
2860 shaderStr += std::string(
"\
2861 \n for (int i = 1; i < in_noOfComponents; ++i)\
2863 \n if (in_componentWeight[i] > in_componentWeight[maxComp])\
2866 compParamStr =
", maxComp";
2868 shaderStr += std::string(
"\
2869 \n if (g_currentT == 0)\
2871 \n l_initialIndex = findIsoSurfaceIndex(scalar[maxComp], l_normValues);\
2876 \n bool shade = false;\
2877 \n l_initialIndex = clamp(l_initialIndex, 0, NUMBER_OF_CONTOURS);\
2878 \n if (scalar[maxComp] < l_normValues[l_initialIndex])\
2880 \n s = l_normValues[l_initialIndex];\
2881 \n l_initialIndex--;\
2884 \n if (scalar[maxComp] > l_normValues[l_initialIndex+1])\
2886 \n s = l_normValues[l_initialIndex+1];\
2887 \n l_initialIndex++;\
2890 \n if (shade == true)\
2892 \n vec4 vs = vec4(s);\
2893 \n g_srcColor.a = computeOpacity(vs " +
2895 \n g_srcColor = computeColor(vs, g_srcColor.a " +
2897 \n g_srcColor.rgb *= g_srcColor.a;\
2898 \n g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;\
2905 shaderStr += std::string(
"\
2906 \n // test if the intersection is inside the volume bounds\
2907 \n if (any(greaterThan(g_dataPos, vec3(1.0))) || any(lessThan(g_dataPos, vec3(0.0))))\
2911 \n float opacity = computeOpacity(scalar);\
2912 \n g_fragColor = computeColor(scalar, opacity);\
2913 \n g_fragColor.rgb *= opacity;\
2914 \n g_exit = true;");
2918 if (noOfComponents > 1 && independentComponents)
2920 shaderStr += std::string(
"\
2921 \n vec4 color[4]; vec4 tmp = vec4(0.0);\
2922 \n float totalAlpha = 0.0;\
2923 \n for (int i = 0; i < in_noOfComponents; ++i)\
2929 shaderStr += std::string(
"\
2930 \n // Data fetching from the red channel of volume texture\
2931 \n float opacity = computeOpacity(scalar, i);\
2932 \n if (opacity > 0.0)\
2934 \n g_srcColor.a = opacity;\
2940 shaderStr += std::string(
"\
2941 \n // Data fetching from the red channel of volume texture\
2942 \n color[i][3] = computeOpacity(scalar, i);\
2943 \n color[i] = computeColor(scalar, color[i][3], i);\
2944 \n totalAlpha += color[i][3] * in_componentWeight[i];\
2946 \n if (totalAlpha > 0.0)\
2948 \n for (int i = 0; i < in_noOfComponents; ++i)\
2950 \n // Only let visible components contribute to the final color\
2951 \n if (in_componentWeight[i] <= 0) continue;\
2953 \n tmp.x += color[i].x * color[i].w * in_componentWeight[i];\
2954 \n tmp.y += color[i].y * color[i].w * in_componentWeight[i];\
2955 \n tmp.z += color[i].z * color[i].w * in_componentWeight[i];\
2956 \n tmp.w += ((color[i].w * color[i].w)/totalAlpha);\
2959 \n g_fragColor = (1.0f - g_fragColor.a) * tmp + g_fragColor;");
2965 shaderStr += std::string(
"\
2966 \n g_srcColor = vec4(0.0);\
2967 \n g_srcColor.a = computeOpacity(scalar);");
2973 shaderStr += std::string(
"\
2974 \n g_srcColor = vec4(0.0);\
2975 \n g_srcColor.a = computeOpacity(scalar);\
2976 \n if (g_srcColor.a > 0.0)\
2978 \n g_srcColor = computeColor(scalar, g_srcColor.a);");
2981 shaderStr += std::string(
"\
2982 \n // Opacity calculation using compositing:\
2983 \n // Here we use front to back compositing scheme whereby\
2984 \n // the current sample value is multiplied to the\
2985 \n // currently accumulated alpha and then this product\
2986 \n // is subtracted from the sample value to get the\
2987 \n // alpha from the previous steps. Next, this alpha is\
2988 \n // multiplied with the current sample colour\
2989 \n // and accumulated to the composited colour. The alpha\
2990 \n // value from the previous steps is then accumulated\
2991 \n // to the composited colour alpha.\
2992 \n g_srcColor.rgb *= g_srcColor.a;\
2993 \n g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;");
2997 shaderStr += std::string(
"\
3004 shaderStr += std::string();
3007 shaderStr += std::string(
"\
3016 return std::string(
"\
3017 \n // Special coloring mode which renders the Prop Id in fragments that\
3018 \n // have accumulated certain level of opacity. Used during the selection\
3019 \n // pass vtkHardwareSelection::ACTOR_PASS.\
3020 \n if (g_fragColor.a > 3.0/ 255.0)\
3022 \n gl_FragData[0] = vec4(in_propId, 1.0);\
3026 \n gl_FragData[0] = vec4(0.0);\
3035 return std::string(
"\
3036 \n // Special coloring mode which renders the voxel index in fragments that\
3037 \n // have accumulated certain level of opacity. Used during the selection\
3038 \n // pass vtkHardwareSelection::ID_LOW24.\
3039 \n if (g_fragColor.a > 3.0/ 255.0)\
3041 \n uvec3 volumeDim = uvec3(in_textureExtentsMax - in_textureExtentsMin);\
3042 \n uvec3 voxelCoords = uvec3(volumeDim * g_dataPos);\
3043 \n // vtkHardwareSelector assumes index 0 to be empty space, so add uint(1).\
3044 \n uint idx = volumeDim.x * volumeDim.y * voxelCoords.z +\
3045 \n volumeDim.x * voxelCoords.y + voxelCoords.x + uint(1);\
3046 \n gl_FragData[0] = vec4(float(idx % uint(256)) / 255.0,\
3047 \n float((idx / uint(256)) % uint(256)) / 255.0,\
3048 \n float((idx / uint(65536)) % uint(256)) / 255.0, 1.0);\
3052 \n gl_FragData[0] = vec4(0.0);\
3061 return std::string(
"\
3062 \n // Special coloring mode which renders the voxel index in fragments that\
3063 \n // have accumulated certain level of opacity. Used during the selection\
3064 \n // pass vtkHardwareSelection::ID_MID24.\
3065 \n if (g_fragColor.a > 3.0/ 255.0)\
3067 \n uvec3 volumeDim = uvec3(in_textureExtentsMax - in_textureExtentsMin);\
3068 \n uvec3 voxelCoords = uvec3(volumeDim * g_dataPos);\
3069 \n // vtkHardwareSelector assumes index 0 to be empty space, so add uint(1).\
3070 \n uint idx = volumeDim.x * volumeDim.y * voxelCoords.z +\
3071 \n volumeDim.x * voxelCoords.y + voxelCoords.x + uint(1);\
3072 \n idx = ((idx & 0xff000000) >> 24);\
3073 \n gl_FragData[0] = vec4(float(idx % uint(256)) / 255.0,\
3074 \n float((idx / uint(256)) % uint(256)) / 255.0,\
3075 \n float(idx / uint(65536)) / 255.0, 1.0);\
3079 \n gl_FragData[0] = vec4(0.0);\
3086 vtkVolume* vtkNotUsed(vol),
int noOfComponents,
int independentComponents = 0)
3094 return std::string();
3098 if (noOfComponents > 1 && independentComponents)
3100 return std::string(
"\
3101 \n g_srcColor = vec4(0);\
3102 \n for (int i = 0; i < in_noOfComponents; ++i)\
3104 \n vec4 tmp = computeColor(l_maxValue, computeOpacity(l_maxValue, i), i);\
3105 \n g_srcColor[0] += tmp[0] * tmp[3] * in_componentWeight[i];\
3106 \n g_srcColor[1] += tmp[1] * tmp[3] * in_componentWeight[i];\
3107 \n g_srcColor[2] += tmp[2] * tmp[3] * in_componentWeight[i];\
3108 \n g_srcColor[3] += tmp[3] * in_componentWeight[i];\
3110 \n g_fragColor = g_srcColor;");
3114 return std::string(
"\
3115 \n g_srcColor = computeColor(l_maxValue,\
3116 \n computeOpacity(l_maxValue));\
3117 \n g_fragColor.rgb = g_srcColor.rgb * g_srcColor.a;\
3118 \n g_fragColor.a = g_srcColor.a;");
3123 if (noOfComponents > 1 && independentComponents)
3125 return std::string(
"\
3126 \n g_srcColor = vec4(0);\
3127 \n for (int i = 0; i < in_noOfComponents; ++i)\
3129 \n vec4 tmp = computeColor(l_minValue, computeOpacity(l_minValue, i), i);\
3130 \n g_srcColor[0] += tmp[0] * tmp[3] * in_componentWeight[i];\
3131 \n g_srcColor[1] += tmp[1] * tmp[3] * in_componentWeight[i];\
3132 \n g_srcColor[2] += tmp[2] * tmp[3] * in_componentWeight[i];\
3133 \n g_srcColor[2] += tmp[3] * tmp[3] * in_componentWeight[i];\
3135 \n g_fragColor = g_srcColor;");
3139 return std::string(
"\
3140 \n g_srcColor = computeColor(l_minValue,\
3141 \n computeOpacity(l_minValue));\
3142 \n g_fragColor.rgb = g_srcColor.rgb * g_srcColor.a;\
3143 \n g_fragColor.a = g_srcColor.a;");
3148 if (noOfComponents > 1 && independentComponents)
3150 return std::string(
"\
3151 \n for (int i = 0; i < in_noOfComponents; ++i)\
3153 \n if (l_numSamples[i] == uint(0))\
3157 \n l_avgValue[i] = l_avgValue[i] * in_componentWeight[i] /\
3158 \n l_numSamples[i];\
3161 \n l_avgValue[0] += l_avgValue[i];\
3164 \n l_avgValue[0] = clamp(l_avgValue[0], 0.0, 1.0);\
3165 \n g_fragColor = vec4(vec3(l_avgValue[0]), 1.0);");
3169 return std::string(
"\
3170 \n if (l_numSamples.x == uint(0))\
3176 \n l_avgValue.x /= l_numSamples.x;\
3177 \n l_avgValue.x = clamp(l_avgValue.x, 0.0, 1.0);\
3178 \n g_fragColor = vec4(vec3(l_avgValue.x), 1.0);\
3184 if (noOfComponents > 1 && independentComponents)
3187 return std::string(
"\
3188 \n l_sumValue.x *= in_componentWeight.x;\
3189 \n for (int i = 1; i < in_noOfComponents; ++i)\
3191 \n l_sumValue.x += l_sumValue[i] * in_componentWeight[i];\
3193 \n l_sumValue.x = clamp(l_sumValue.x, 0.0, 1.0);\
3194 \n g_fragColor = vec4(vec3(l_sumValue.x), 1.0);");
3198 return std::string(
"\
3199 \n l_sumValue.x = clamp(l_sumValue.x, 0.0, 1.0);\
3200 \n g_fragColor = vec4(vec3(l_sumValue.x), 1.0);");
3205 return std::string();
3213 return std::string();
3220 return std::string(
"\
3221 \n const float g_opacityThreshold = 1.0 - 1.0 / 255.0;");
3228 return std::string(
"\
3229 \n uniform vec3 in_propId;");
3236 std::string shaderStr;
3237 shaderStr += std::string(
"\
3238 \n // Flag to indicate if the raymarch loop should terminate \
3239 \n bool stop = false;\
3241 \n g_terminatePointMax = 0.0;\
3243 \n vec4 l_depthValue = texture2D(in_depthSampler, fragTexCoord);\
3245 \n if(gl_FragCoord.z >= l_depthValue.x)\
3250 \n // color buffer or max scalar buffer have a reduced size.\
3251 \n fragTexCoord = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
3252 \n in_inverseOriginalWindowSize;\
3260 if (sliceFunc->
IsA(
"vtkPlane"))
3262 shaderStr += std::string(
"\
3264 \n // Intersection with plane\
3265 \n float t = intersectRayPlane(ip_vertexPos, rayDir);\
3266 \n vec4 intersection = vec4(ip_vertexPos + t * rayDir, 1.0);\
3267 \n g_intersection = (in_inverseTextureDatasetMatrix[0] * intersection).xyz;\
3268 \n vec4 intersDC = in_projectionMatrix * in_modelViewMatrix * in_volumeMatrix[0] * intersection;\
3269 \n intersDC.xyz /= intersDC.w;\
3270 \n vec4 intersWin = NDCToWindow(intersDC.x, intersDC.y, intersDC.z);\
3271 \n if(intersWin.z >= l_depthValue.x)\
3279 vtkErrorWithObjectMacro(
3280 sliceFunc,
"Implicit function type is not supported by this mapper.");
3285 shaderStr += std::string(
"\
3286 \n // Compute max number of iterations it will take before we hit\
3287 \n // the termination point\
3289 \n // Abscissa of the point on the depth buffer along the ray.\
3290 \n // point in texture coordinates\
3291 \n vec4 rayTermination = WindowToNDC(gl_FragCoord.x, gl_FragCoord.y, l_depthValue.x);\
3293 \n // From normalized device coordinates to eye coordinates.\
3294 \n // in_projectionMatrix is inversed because of way VT\
3295 \n // From eye coordinates to texture coordinates\
3296 \n rayTermination = ip_inverseTextureDataAdjusted *\
3297 \n in_inverseVolumeMatrix[0] *\
3298 \n in_inverseModelViewMatrix *\
3299 \n in_inverseProjectionMatrix *\
3301 \n g_rayTermination = rayTermination.xyz / rayTermination.w;\
3303 \n // Setup the current segment:\
3304 \n g_dataPos = g_rayOrigin;\
3305 \n g_terminatePos = g_rayTermination;\
3307 \n g_terminatePointMax = length(g_terminatePos.xyz - g_dataPos.xyz) /\
3308 \n length(g_dirStep);\
3309 \n g_currentT = 0.0;");
3318 return std::string(
"\
3319 \n if(any(greaterThan(max(g_dirStep, vec3(0.0))*(g_dataPos - in_texMax[0]),vec3(0.0))) ||\
3320 \n any(greaterThan(min(g_dirStep, vec3(0.0))*(g_dataPos - in_texMin[0]),vec3(0.0))))\
3325 \n // Early ray termination\
3326 \n // if the currently composited colour alpha is already fully saturated\
3327 \n // we terminated the loop or if we have hit an obstacle in the\
3328 \n // direction of they ray (using depth buffer) we terminate as well.\
3329 \n if((g_fragColor.a > g_opacityThreshold) || \
3330 \n g_currentT >= g_terminatePointMax)\
3341 return std::string();
3348 return std::string();
3357 return std::string();
3360 return std::string(
"\
3361 \nuniform float in_croppingPlanes[6];\
3362 \nuniform int in_croppingFlags [32];\
3363 \nfloat croppingPlanesTexture[6];\
3365 \n// X: axis = 0, Y: axis = 1, Z: axis = 2\
3366 \n// cp Cropping plane bounds (minX, maxX, minY, maxY, minZ, maxZ)\
3367 \nint computeRegionCoord(float cp[6], vec3 pos, int axis)\
3369 \n int cpmin = axis * 2;\
3370 \n int cpmax = cpmin + 1;\
3372 \n if (pos[axis] < cp[cpmin])\
3376 \n else if (pos[axis] >= cp[cpmin] &&\
3377 \n pos[axis] < cp[cpmax])\
3381 \n else if (pos[axis] >= cp[cpmax])\
3388 \nint computeRegion(float cp[6], vec3 pos)\
3390 \n return (computeRegionCoord(cp, pos, 0) +\
3391 \n (computeRegionCoord(cp, pos, 1) - 1) * 3 +\
3392 \n (computeRegionCoord(cp, pos, 2) - 1) * 9);\
3402 return std::string();
3405 return std::string(
"\
3406 \n // Convert cropping region to texture space\
3407 \n mat4 datasetToTextureMat = in_inverseTextureDatasetMatrix[0];\
3409 \n vec4 tempCrop = vec4(in_croppingPlanes[0], 0.0, 0.0, 1.0);\
3410 \n tempCrop = datasetToTextureMat * tempCrop;\
3411 \n if (tempCrop[3] != 0.0)\
3413 \n tempCrop[0] /= tempCrop[3];\
3415 \n croppingPlanesTexture[0] = tempCrop[0];\
3417 \n tempCrop = vec4(in_croppingPlanes[1], 0.0, 0.0, 1.0);\
3418 \n tempCrop = datasetToTextureMat * tempCrop;\
3419 \n if (tempCrop[3] != 0.0)\
3421 \n tempCrop[0] /= tempCrop[3];\
3423 \n croppingPlanesTexture[1] = tempCrop[0];\
3425 \n tempCrop = vec4(0.0, in_croppingPlanes[2], 0.0, 1.0);\
3426 \n tempCrop = datasetToTextureMat * tempCrop;\
3427 \n if (tempCrop[3] != 0.0)\
3429 \n tempCrop[1] /= tempCrop[3];\
3431 \n croppingPlanesTexture[2] = tempCrop[1];\
3433 \n tempCrop = vec4(0.0, in_croppingPlanes[3], 0.0, 1.0);\
3434 \n tempCrop = datasetToTextureMat * tempCrop;\
3435 \n if (tempCrop[3] != 0.0)\
3437 \n tempCrop[1] /= tempCrop[3];\
3439 \n croppingPlanesTexture[3] = tempCrop[1];\
3441 \n tempCrop = vec4(0.0, 0.0, in_croppingPlanes[4], 1.0);\
3442 \n tempCrop = datasetToTextureMat * tempCrop;\
3443 \n if (tempCrop[3] != 0.0)\
3445 \n tempCrop[2] /= tempCrop[3];\
3447 \n croppingPlanesTexture[4] = tempCrop[2];\
3449 \n tempCrop = vec4(0.0, 0.0, in_croppingPlanes[5], 1.0);\
3450 \n tempCrop = datasetToTextureMat * tempCrop;\
3451 \n if (tempCrop[3] != 0.0)\
3453 \n tempCrop[2] /= tempCrop[3];\
3455 \n croppingPlanesTexture[5] = tempCrop[2];");
3464 return std::string();
3467 return std::string(
"\
3468 \n // Determine region\
3469 \n int regionNo = computeRegion(croppingPlanesTexture, g_dataPos);\
3471 \n // Do & operation with cropping flags\
3472 \n // Pass the flag that its Ok to sample or not to sample\
3473 \n if (in_croppingFlags[regionNo] == 0)\
3475 \n // Skip this voxel\
3484 return std::string();
3491 return std::string();
3500 return std::string();
3503 return std::string(
"\
3504 \n /// We support only 8 clipping planes for now\
3505 \n /// The first value is the size of the data array for clipping\
3506 \n /// planes (origin, normal)\
3507 \n uniform float in_clippingPlanes[49];\
3508 \n uniform float in_clippedVoxelIntensity;\
3510 \n int clip_numPlanes;\
3511 \n vec3 clip_rayDirObj;\
3512 \n mat4 clip_texToObjMat;\
3513 \n mat4 clip_objToTexMat;\
3515 \n// Tighten the sample range as needed to account for clip planes. \
3516 \n// Arguments are in texture coordinates. \
3517 \n// Returns true if the range is at all valid after clipping. If not, \
3518 \n// the fragment should be discarded. \
3519 \nbool AdjustSampleRangeForClipping(inout vec3 startPosTex, inout vec3 stopPosTex) \
3521 \n vec4 startPosObj = vec4(0.0);\
3523 \n startPosObj = clip_texToObjMat * vec4(startPosTex - g_rayJitter, 1.0);\
3524 \n startPosObj = startPosObj / startPosObj.w;\
3525 \n startPosObj.w = 1.0;\
3528 \n vec4 stopPosObj = vec4(0.0);\
3530 \n stopPosObj = clip_texToObjMat * vec4(stopPosTex, 1.0);\
3531 \n stopPosObj = stopPosObj / stopPosObj.w;\
3532 \n stopPosObj.w = 1.0;\
3535 \n for (int i = 0; i < clip_numPlanes; i = i + 6)\
3537 \n vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\
3538 \n in_clippingPlanes[i + 2],\
3539 \n in_clippingPlanes[i + 3]);\
3540 \n vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\
3541 \n in_clippingPlanes[i + 5],\
3542 \n in_clippingPlanes[i + 6]));\
3544 \n // Abort if the entire segment is clipped:\
3545 \n // (We can do this before adjusting the term point, since it'll \
3546 \n // only move further into the clipped area)\
3547 \n float startDistance = dot(planeNormal, planeOrigin - startPosObj.xyz);\
3548 \n float stopDistance = dot(planeNormal, planeOrigin - stopPosObj.xyz);\
3549 \n bool startClipped = startDistance > 0.0;\
3550 \n bool stopClipped = stopDistance > 0.0;\
3551 \n if (startClipped && stopClipped)\
3556 \n float rayDotNormal = dot(clip_rayDirObj, planeNormal);\
3557 \n bool frontFace = rayDotNormal > 0.0;\
3559 \n // Move the start position further from the eye if needed:\
3560 \n if (frontFace && // Observing from the clipped side (plane's front face)\
3561 \n startDistance > 0.0) // Ray-entry lies on the clipped side.\
3563 \n // Scale the point-plane distance to the ray direction and update the\
3565 \n float rayScaledDist = startDistance / rayDotNormal;\
3566 \n startPosObj = vec4(startPosObj.xyz + rayScaledDist * clip_rayDirObj, 1.0);\
3567 \n vec4 newStartPosTex = clip_objToTexMat * vec4(startPosObj.xyz, 1.0);\
3568 \n newStartPosTex /= newStartPosTex.w;\
3569 \n startPosTex = newStartPosTex.xyz;\
3570 \n startPosTex += g_rayJitter;\
3573 \n // Move the end position closer to the eye if needed:\
3574 \n if (!frontFace && // Observing from the unclipped side (plane's back face)\
3575 \n stopDistance > 0.0) // Ray-entry lies on the unclipped side.\
3577 \n // Scale the point-plane distance to the ray direction and update the\
3578 \n // termination point.\
3579 \n float rayScaledDist = stopDistance / rayDotNormal;\
3580 \n stopPosObj = vec4(stopPosObj.xyz + rayScaledDist * clip_rayDirObj, 1.0);\
3581 \n vec4 newStopPosTex = clip_objToTexMat * vec4(stopPosObj.xyz, 1.0);\
3582 \n newStopPosTex /= newStopPosTex.w;\
3583 \n stopPosTex = newStopPosTex.xyz;\
3587 \n if (any(greaterThan(startPosTex, in_texMax[0])) ||\
3588 \n any(lessThan(startPosTex, in_texMin[0])))\
3604 return std::string();
3607 std::string shaderStr;
3610 shaderStr = std::string(
"\
3611 \n vec4 tempClip = in_volumeMatrix[0] * vec4(rayDir, 0.0);\
3612 \n if (tempClip.w != 0.0)\
3614 \n tempClip = tempClip/tempClip.w;\
3615 \n tempClip.w = 1.0;\
3617 \n clip_rayDirObj = normalize(tempClip.xyz);");
3621 shaderStr = std::string(
"\
3622 clip_rayDirObj = normalize(in_projectionDirection);");
3625 shaderStr += std::string(
"\
3626 \n clip_numPlanes = int(in_clippingPlanes[0]);\
3627 \n clip_texToObjMat = in_volumeMatrix[0] * inverse(ip_inverseTextureDataAdjusted);\
3628 \n clip_objToTexMat = ip_inverseTextureDataAdjusted * in_inverseVolumeMatrix[0];\
3630 \n // Adjust for clipping.\
3631 \n if (!AdjustSampleRangeForClipping(g_rayOrigin, g_rayTermination))\
3632 \n { // entire ray is clipped.\
3636 \n // Update the segment post-clip:\
3637 \n g_dataPos = g_rayOrigin;\
3638 \n g_terminatePos = g_rayTermination;\
3639 \n g_terminatePointMax = length(g_terminatePos.xyz - g_dataPos.xyz) /\
3640 \n length(g_dirStep);\
3650 return std::string();
3657 return std::string();
3665 if (!mask || !maskInput)
3667 return std::string();
3671 return std::string(
"uniform sampler3D in_mask;");
3682 return std::string();
3686 return std::string(
"\
3687 \nvec4 maskValue = texture3D(in_mask, g_dataPos);\
3688 \nif(maskValue.r <= 0.0)\
3702 return std::string();
3706 return std::string(
"\
3707 \nuniform float in_maskBlendFactor;\
3708 \nuniform sampler2D in_labelMapTransfer;\
3709 \nuniform float in_mask_scale;\
3710 \nuniform float in_mask_bias;\
3711 \nuniform int in_labelMapNumLabels;\
3723 return std::string();
3727 std::string shaderStr = std::string(
"\
3728 \nvec4 scalar = texture3D(in_volume[0], g_dataPos);");
3731 if (noOfComponents == 1)
3733 shaderStr += std::string(
"\
3734 \n scalar.r = scalar.r * in_volume_scale[0].r + in_volume_bias[0].r;\
3735 \n scalar = vec4(scalar.r);");
3740 shaderStr += std::string(
"\
3741 \n scalar = scalar * in_volume_scale[0] + in_volume_bias[0];");
3747 return shaderStr + std::string(
"\
3748 \nif (in_maskBlendFactor == 0.0)\
3750 \n g_srcColor.a = computeOpacity(scalar);\
3751 \n if (g_srcColor.a > 0)\
3753 \n g_srcColor = computeColor(scalar, g_srcColor.a);\
3758 \n float opacity = computeOpacity(scalar);\
3759 \n // Get the mask value at this same location\
3760 \n vec4 maskValue = texture3D(in_mask, g_dataPos);\
3761 \n maskValue.r = maskValue.r * in_mask_scale + in_mask_bias;\
3762 \n // Quantize the height of the labelmap texture over number of labels\
3763 \n if (in_labelMapNumLabels > 0)\
3766 \n floor(maskValue.r * in_labelMapNumLabels) /\
3767 \n in_labelMapNumLabels;\
3771 \n maskValue.r = 0.0;\
3773 \n if(maskValue.r == 0.0)\
3775 \n g_srcColor.a = opacity;\
3776 \n if (g_srcColor.a > 0)\
3778 \n g_srcColor = computeColor(scalar, g_srcColor.a);\
3783 \n g_srcColor = texture2D(in_labelMapTransfer,\
3784 \n vec2(scalar.r, maskValue.r));\
3785 \n if (g_srcColor.a > 0)\
3787 \n g_srcColor = computeLighting(g_srcColor, 0, maskValue.r);\
3789 \n if (in_maskBlendFactor < 1.0)\
3791 \n vec4 color = opacity > 0 ? computeColor(scalar, opacity) : vec4(0);\
3792 \n g_srcColor = (1.0 - in_maskBlendFactor) * color +\
3793 \n in_maskBlendFactor * g_srcColor;\
3804 return std::string(
"uniform bool in_clampDepthToBackface;\n"
3805 "vec3 l_opaqueFragPos;\n"
3806 "bool l_updateDepth;\n");
3813 return std::string(
"\
3814 \n l_opaqueFragPos = vec3(-1.0);\
3815 \n if(in_clampDepthToBackface)\
3817 \n l_opaqueFragPos = g_dataPos;\
3819 \n l_updateDepth = true;");
3826 return std::string(
"\
3827 \n if(!g_skip && g_srcColor.a > 0.0 && l_updateDepth)\
3829 \n l_opaqueFragPos = g_dataPos;\
3830 \n l_updateDepth = false;\
3838 return std::string(
"\
3839 \n if (l_opaqueFragPos == vec3(-1.0))\
3841 \n gl_FragData[1] = vec4(1.0);\
3845 \n vec4 depthValue = in_projectionMatrix * in_modelViewMatrix *\
3846 \n in_volumeMatrix[0] * in_textureDatasetMatrix[0] *\
3847 \n vec4(l_opaqueFragPos, 1.0);\
3848 \n depthValue /= depthValue.w;\
3849 \n gl_FragData[1] = vec4(vec3(0.5 * (gl_DepthRange.far -\
3850 \n gl_DepthRange.near) * depthValue.z + 0.5 *\
3851 \n (gl_DepthRange.far + gl_DepthRange.near)), 1.0);\
3859 return std::string(
"\
3860 \n vec3 l_isoPos = g_dataPos;");
3867 return std::string(
"\
3868 \n if(!g_skip && g_srcColor.a > 0.0)\
3870 \n l_isoPos = g_dataPos;\
3871 \n g_exit = true; g_skip = true;\
3879 return std::string(
"\
3880 \n vec4 depthValue = in_projectionMatrix * in_modelViewMatrix *\
3881 \n in_volumeMatrix[0] * in_textureDatasetMatrix[0] *\
3882 \n vec4(l_isoPos, 1.0);\
3883 \n gl_FragData[0] = vec4(l_isoPos, 1.0);\
3884 \n gl_FragData[1] = vec4(vec3((depthValue.z/depthValue.w) * 0.5 + 0.5),\
3892 return std::string(
"\
3893 \n initializeRayCast();\
3894 \n castRay(-1.0, -1.0);\
3895 \n finalizeRayCast();");
3900 const std::vector<std::string>& varNames,
size_t usedNames)
3902 std::string shader =
"\n";
3903 for (
size_t i = 0; i < usedNames; i++)
3905 shader +=
"uniform sampler2D " + varNames[i] +
";\n";
3912 const std::vector<std::string>& varNames,
size_t usedNames)
3914 std::string shader =
"\n";
3915 for (
size_t i = 0; i < usedNames; i++)
3917 std::stringstream ss;
3919 shader +=
" gl_FragData[" + ss.str() +
"] = texture2D(" + varNames[i] +
", texCoord);\n";
3921 shader +=
" return;\n";
3924VTK_ABI_NAMESPACE_END
virtual vtkPlaneCollection * GetClippingPlanes()
Get/Set the vtkPlaneCollection which specifies the clipping planes.
virtual vtkTypeBool GetParallelProjection()
Set/Get the value of the ParallelProjection instance variable.
static vtkDataSet * SafeDownCast(vtkObjectBase *o)
vtkUnsignedCharArray * GetCellGhostArray()
Get the array that defines the ghost type of each cell.
vtkUnsignedCharArray * GetPointGhostArray()
Gets the array that defines the ghost type of each point.
virtual vtkTypeBool GetUseDepthPass()
If UseDepthPass is on, the mapper will use two passes.
virtual vtkTypeBool GetUseJittering()
If UseJittering is on, each ray traversal direction will be perturbed slightly using a noise-texture ...
static vtkGPUVolumeRayCastMapper * SafeDownCast(vtkObjectBase *o)
int GetInputCount()
Number of currently active ports.
virtual float GetVolumetricScatteringBlending()
This parameter controls the blending between surfacic approximation and volumetric multi-scattering.
topologically and geometrically regular array of data
abstract interface for implicit functions
virtual vtkTypeBool IsA(const char *type)
Return 1 if this class is the same type of (or a subclass of) the named class.
OpenGL implementation of volume rendering through ray-casting.
static vtkOpenGLGPUVolumeRayCastMapper * SafeDownCast(vtkObjectBase *o)
std::map< int, vtkVolumeInputHelper > VolumeInputMap
virtual int GetCurrentPass()
static vtkRectilinearGrid * SafeDownCast(vtkObjectBase *o)
abstract specification for renderers
vtkCamera * GetActiveCamera()
Get the current camera.
Hold a reference to a vtkObjectBase instance.
Abstract class for a volume mapper.
virtual bool GetComputeNormalFromOpacity()
If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the sc...
virtual vtkDataSet * GetInput()
Set/Get the input data.
virtual vtkTypeBool GetCropping()
Turn On/Off orthogonal cropping.
@ AVERAGE_INTENSITY_BLEND
@ MAXIMUM_INTENSITY_BLEND
@ MINIMUM_INTENSITY_BLEND
virtual int GetBlendMode()
Set/Get the blend mode.
represents the common properties for rendering a volume.
virtual int GetDisableGradientOpacity(int index)
Enable/Disable the gradient opacity function for the given component.
virtual vtkImplicitFunction * GetSliceFunction()
Get/Set the function used for slicing.
virtual float GetScatteringAnisotropy()
Get/Set the volume's scattering anisotropy.
bool HasLabelGradientOpacity()
virtual int GetUseClippedVoxelIntensity()
Set/Get whether to use a fixed intensity value for voxels in the clipped space for gradient calculati...
bool HasGradientOpacity(int index=0)
Check whether or not we have the gradient opacity.
int GetShade(int index)
Set/Get the shading of a volume.
virtual int GetTransferFunctionMode()
Color-opacity transfer function mode.
Creates and manages the volume texture rendered by vtkOpenGLGPUVolumeRayCastMapper.
represents a volume (data & properties) in a rendered scene
virtual vtkVolumeProperty * GetProperty()
Set/Get the volume property.
std::string ClippingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeGradientOpacity1DDecl(vtkVolume *vol, int noOfComponents, int independentComponents, std::map< int, std::string > gradientTableMap)
std::string WorkerImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ClippingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeDensityGradientDeclaration(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, int independentComponents, int useGradYAxis)
std::string BinaryMaskDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int vtkNotUsed(maskType))
std::string PickingIdLow24PassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string CroppingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeLightingDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol, int noOfComponents, int independentComponents, int totalNumberOfLights, int numberPositionalLights, bool defaultLighting)
std::string PhaseFunctionDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vol)
std::string ComputeColorDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > colorTableMap)
std::string CroppingImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ShadingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents=0)
std::string BaseExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacityMultiDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string BaseDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), bool multipleInputs)
std::string ComputeTextureCoordinates(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string DepthPassInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol)
std::string ComputeMatricesInit(vtkOpenGLGPUVolumeRayCastMapper *vtkNotUsed(mapper), int numberPositionalLights)
std::string RenderToImageInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeClipPositionImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string RenderToImageImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacityDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap)
std::string PreComputeGradientsImpl(vtkRenderer *vtkNotUsed(ren), vtkVolume *vtkNotUsed(vol), int noOfComponents=1, int independentComponents=0)
std::string ClippingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeGradientDeclaration(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string PickingIdHigh24PassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string PickingActorPassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string RenderToImageDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string BaseDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int totalNumberOfLights, int numberPositionalLights, bool defaultLighting, int noOfComponents, int independentComponents)
std::string BaseImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string RenderToImageExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingSingleInput(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType, int noOfComponents, int independentComponents=0)
std::string ShadingMultipleInputs(vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string CompositeMaskDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType)
std::string ComputeColorUniforms(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, vtkVolumeProperty *volProp)
std::string ComputeRayDirectionDeclaration(vtkRenderer *ren, vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int vtkNotUsed(noOfComponents))
std::string ImageSampleDeclarationFrag(const std::vector< std::string > &varNames, size_t usedNames)
std::string BaseInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, bool defaultLighting)
std::string DepthPassImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string GradientCacheDec(vtkRenderer *vtkNotUsed(ren), vtkVolume *vtkNotUsed(vol), vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int independentComponents=0)
std::string Transfer2DDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string ClippingImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string CroppingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeRGBA2DWithGradientDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap, int useGradient)
std::string ComputeColorMultiDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, bool useGradientTF)
std::string ImageSampleImplementationFrag(const std::vector< std::string > &varNames, size_t usedNames)
std::string CroppingInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string CompositeMaskImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType, int noOfComponents)
std::string ComputeColor2DYAxisDeclaration(int noOfComponents, int vtkNotUsed(independentComponents), std::map< int, std::string > colorTableMap)
std::string CroppingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ClippingInit(vtkRenderer *ren, vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeLightingMultiDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol, int noOfComponents, int independentComponents, int vtkNotUsed(totalNumberOfLights), bool defaultLighting)
std::string TerminationDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string PickingActorPassDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string BinaryMaskImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType)
std::string DepthPassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacity2DDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap, int useGradient)
std::string ComputeOpacityEvaluationCall(vtkOpenGLGPUVolumeRayCastMapper *vtkNotUsed(mapper), vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, int independentComponents, int useGradYAxis, std::string position, bool requestColor=false)
std::string ComputeColor2DDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > colorTableMap, int useGradient)
std::string ComputeGradientOpacityMulti1DDecl(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string ComputeVolumetricShadowDec(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int useGradYAxis)